def product_dashboard_generic(request, prod): template = 'analytics/product_dashboard.html' current_search = {} search_query = request.GET.get('q', None) if search_query: current_search['q'] = search_query search_date_end = smart_date(request.GET.get('date_end', None), fallback=None) if search_date_end is None: search_date_end = date.today() current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') search_date_start = smart_date(request.GET.get('date_start', None), fallback=None) if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') histogram = generate_totals_histogram(search_date_start, search_date_end, search_query, prod) return render( request, template, { 'start_date': search_date_start, 'end_date': search_date_end, 'current_search': current_search, 'histogram': histogram, 'product': prod })
def product_dashboard_generic(request, prod): template = 'analytics/product_dashboard.html' current_search = {} search_query = request.GET.get('q', None) if search_query: current_search['q'] = search_query search_date_end = smart_date( request.GET.get('date_end', None), fallback=None) if search_date_end is None: search_date_end = date.today() current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') search_date_start = smart_date( request.GET.get('date_start', None), fallback=None) if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') histogram = generate_totals_histogram( search_date_start, search_date_end, search_query, prod) return render(request, template, { 'start_date': search_date_start, 'end_date': search_date_end, 'current_search': current_search, 'histogram': histogram, 'product': prod })
def translations_management_backfill_view(request): """Takes start and end dates and a model and backfills translations""" date_start = smart_date(request.POST.get('date_start')) date_end = smart_date(request.POST.get('date_end')) model = smart_str(request.POST.get('model')) if request.method == 'POST' and date_start and date_end and model: # NB: We just let the errors propagate because this is an # admin page. That way we get a traceback and all that detail. # We add one day to date_end so that it picks up the entire day of # date_end. # # FIXME: We should do this in a less goofy way. date_end = date_end + timedelta(days=1) model_cls = import_by_path(model) # FIXME: This assumes the model has a "created" field. If it # doesn't, then this breaks. When we have another model that we # want to translate, we can figure out how to generalize this # then. objects = model_cls.objects.filter( created__gte=date_start, created__lte=date_end ) total_jobs = 0 for instance in objects: total_jobs += len(create_translation_tasks(instance)) messages.success(request, '%s jobs added' % total_jobs) return HttpResponseRedirect(request.path) from fjord.translations.tasks import REGISTERED_MODELS model_classes = [ cls.__module__ + '.' + cls.__name__ for cls in REGISTERED_MODELS ] return render(request, 'admin/translations_backfill.html', { 'title': 'Translations - General Maintenance - Backfill', 'settings': settings, 'model_classes': model_classes, 'date_start': request.POST.get('date_start', ''), 'date_end': request.POST.get('date_end', ''), 'model': request.POST.get('model', '') })
def analytics_hourly_histogram(request): """Shows an hourly histogram for the last 5 days of all responses""" template = 'analytics/analyzer/hourly_histogram.html' date_end = smart_date(request.GET.get('date_end', None), fallback=None) if date_end is None: date_end = date.today() date_start = date_end - timedelta(days=5) search = ResponseMappingType.search() filters = F(created__gte=date_start, created__lte=date_end) search.filter(filters) hourly_histogram = search.facet_raw( hourly={ 'date_histogram': { 'interval': 'hour', 'field': 'created' }, 'facet_filter': search._process_filters(filters.filters) }).facet_counts() hourly_data = dict( (p['time'], p['count']) for p in hourly_histogram['hourly']) hour = 60 * 60 * 1000.0 zero_fill(date_start, date_end, [hourly_data], spacing=hour) # FIXME: This is goofy. After zero_fill, we end up with a bunch of trailing # zeros for reasons I don't really understand, so instead of fixing that, I'm # just going to remove them here. hourly_data = sorted(hourly_data.items()) while hourly_data and hourly_data[-1][1] == 0: hourly_data.pop(-1) histogram = [ { 'label': 'Hourly', 'name': 'hourly', 'data': hourly_data }, ] return render(request, template, { 'histogram': histogram, 'start_date': date_start, 'end_date': date_end })
def analytics_hourly_histogram(request): """Shows an hourly histogram for the last 5 days of all responses""" template = 'analytics/analyzer/hourly_histogram.html' date_end = smart_date(request.GET.get('date_end', None), fallback=None) if date_end is None: date_end = date.today() date_start = date_end - timedelta(days=5) search = ResponseMappingType.search() filters = F(created__gte=date_start, created__lte=date_end) search.filter(filters) hourly_histogram = search.facet_raw( hourly={ 'date_histogram': { 'interval': 'hour', 'field': 'created' }, 'facet_filter': search._process_filters(filters.filters) }).facet_counts() hourly_data = dict( (p['time'], p['count']) for p in hourly_histogram['hourly']) hour = 60 * 60 * 1000.0 zero_fill(date_start, date_end, [hourly_data], spacing=hour) # FIXME: This is goofy. After zero_fill, we end up with a bunch of # trailing zeros for reasons I don't really understand, so instead # of fixing that, I'm just going to remove them here. hourly_data = sorted(hourly_data.items()) while hourly_data and hourly_data[-1][1] == 0: hourly_data.pop(-1) histogram = [ { 'label': 'Hourly', 'name': 'hourly', 'data': hourly_data }, ] return render(request, template, { 'histogram': histogram, 'start_date': date_start, 'end_date': date_end })
def product_dashboard_firefox(request, prod): template = 'analytics/product_dashboard_firefox.html' current_search = {} search_query = request.GET.get('q', None) if search_query: current_search['q'] = search_query search_date_end = smart_date( request.GET.get('date_end', None), fallback=None) if search_date_end is None: search_date_end = date.today() current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') search_date_start = smart_date( request.GET.get('date_start', None), fallback=None) if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') histogram = generate_totals_histogram( search_date_start, search_date_end, search_query, prod) # FIXME: This is lame, but we need to make sure the item we're # looking at is the totals. assert histogram[1]['name'] == 'total' totals_sum = sum([p[1] for p in histogram[1]['data']]) search = ResponseMappingType.search() if search_query: search = search.query(description__sqs=search_query) base_f = F() base_f &= F(product=prod.db_name) base_f &= F(created__gte=search_date_start) base_f &= F(created__lt=search_date_end) search = search.filter(base_f) # Figure out the list of platforms and versions for this range. plats_and_vers = (search .facet('platform', 'version', size=50) .facet_counts()) # Figure out the "by platform" histogram platforms = [part['term'] for part in plats_and_vers['platform']] platform_facet = {} for plat in platforms: plat_f = base_f & F(platform=plat) platform_facet[plat if plat else 'unknown'] = { 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(plat_f.filters) } platform_counts = search.facet_raw(**platform_facet).facet_counts() platforms_histogram = [] for key in platform_counts.keys(): data = dict((p['time'], p['count']) for p in platform_counts[key]) sum_counts = sum([p['count'] for p in platform_counts[key]]) if sum_counts < (totals_sum * 0.02): # Skip platforms where the number of responses is less than # 2% of the total. continue zero_fill(search_date_start, search_date_end, [data]) platforms_histogram.append({ 'name': key, 'label': key, 'data': sorted(data.items()), 'lines': {'show': True, 'fill': False}, 'points': {'show': True}, }) # Figure out the "by version" histogram versions = [part['term'] for part in plats_and_vers['version']] version_facet = {} for vers in versions: vers_f = base_f & F(version=vers) version_facet['v' + vers if vers else 'unknown'] = { 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(vers_f.filters) } version_counts = search.facet_raw(**version_facet).facet_counts() versions_histogram = [] for key in version_counts.keys(): data = dict((p['time'], p['count']) for p in version_counts[key]) sum_counts = sum([p['count'] for p in version_counts[key]]) if sum_counts < (totals_sum * 0.02): # Skip versions where the number of responses is less than # 2% of the total. continue zero_fill(search_date_start, search_date_end, [data]) versions_histogram.append({ 'name': key, 'label': key, 'data': sorted(data.items()), 'lines': {'show': True, 'fill': False}, 'points': {'show': True}, }) return render(request, template, { 'start_date': search_date_start, 'end_date': search_date_end, 'current_search': current_search, 'platforms_histogram': platforms_histogram, 'versions_histogram': versions_histogram, 'histogram': histogram, 'product': prod })
def test_null_bytes(self): # strptime likes to barf on null bytes in strings, so test it. eq_(None, smart_date('/etc/passwd\x00'))
def test_date(self): eq_(datetime.date(2012, 1, 1), smart_date('2012-01-01')) eq_(datetime.date(2012, 1, 1), smart_date('2012-1-1'))
def test_sanity(self): eq_(datetime.date(2012, 1, 1), smart_date('2012-01-01')) eq_(None, smart_date('1742-11-05')) eq_(None, smart_date('0001-01-01'))
def get(self, request): """Returns JSON feed of first 1000 results This feels like a duplication of the front-page dashboard search logic, but it's separate which allows us to handle multiple values. """ search = models.ResponseMappingType.search() f = F() if 'happy' in request.GET: happy = {'0': False, '1': True}.get(request.GET['happy'], None) if happy is not None: f &= F(happy=happy) if 'platforms' in request.GET: platforms = request.GET['platforms'].split(',') if platforms: f &= F(platform__in=platforms) if 'locales' in request.GET: locales = request.GET['locales'].split(',') if locales: f &= F(locale__in=locales) if 'products' in request.GET: products = request.GET['products'].split(',') if products: f &= F(product__in=products) if 'versions' in request.GET: versions = request.GET['versions'].split(',') if versions: f &= F(version__in=versions) date_start = smart_date(request.GET.get('date_start', None)) date_end = smart_date(request.GET.get('date_end', None)) delta = smart_timedelta(request.GET.get('date_delta', None)) if delta is not None: if date_end is not None: date_start = date_end - delta elif date_start is not None: date_end = date_start + delta else: date_end = date.today() date_start = date_end - delta if date_start: f &= F(created__gte=date_start) if date_end: f &= F(created__lte=date_end) search = search.filter(f) search_query = request.GET.get('q', None) if search_query is not None: search = search.query(description__sqs=search_query) # FIXME: Probably want to make this specifyable search = search.order_by('-created') # Explicitly include only publicly visible fields search = search.values_dict(models.ResponseMappingType.public_fields()) # FIXME: We're omitting paging here for now. We might want to # add that at some point. responses = search[:1000] return rest_framework.response.Response({ 'count': len(responses), 'results': list(responses) })
def product_dashboard_firefox(request, prod): template = 'analytics/product_dashboard_firefox.html' current_search = {} search_query = request.GET.get('q', None) if search_query: current_search['q'] = search_query search_date_end = smart_date(request.GET.get('date_end', None), fallback=None) if search_date_end is None: search_date_end = date.today() current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') search_date_start = smart_date(request.GET.get('date_start', None), fallback=None) if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') histogram = generate_totals_histogram(search_date_start, search_date_end, search_query, prod) # FIXME: This is lame, but we need to make sure the item we're # looking at is the totals. assert histogram[1]['name'] == 'total' totals_sum = sum([p[1] for p in histogram[1]['data']]) search = ResponseMappingType.search() if search_query: search = search.query(description__sqs=search_query) base_f = F() base_f &= F(product=prod.db_name) base_f &= F(created__gte=search_date_start) base_f &= F(created__lt=search_date_end) search = search.filter(base_f) # Figure out the list of platforms and versions for this range. plats_and_vers = search.facet('platform', 'version', size=50).facet_counts() # Figure out the "by platform" histogram platforms = [part['term'] for part in plats_and_vers['platform']] platform_facet = {} for plat in platforms: plat_f = base_f & F(platform=plat) platform_facet[plat if plat else 'unknown'] = { 'date_histogram': { 'interval': 'day', 'field': 'created' }, 'facet_filter': search._process_filters(plat_f.filters) } platform_counts = search.facet_raw(**platform_facet).facet_counts() platforms_histogram = [] for key in platform_counts.keys(): data = dict((p['time'], p['count']) for p in platform_counts[key]) if sum([p['count'] for p in platform_counts[key]]) < (totals_sum * 0.02): # Skip platforms where the number of responses is less than # 2% of the total. continue zero_fill(search_date_start, search_date_end, [data]) platforms_histogram.append({ 'name': key, 'label': key, 'data': sorted(data.items()), 'lines': { 'show': True, 'fill': False }, 'points': { 'show': True }, }) # Figure out the "by version" histogram versions = [part['term'] for part in plats_and_vers['version']] version_facet = {} for vers in versions: vers_f = base_f & F(version=vers) version_facet['v' + vers if vers else 'unknown'] = { 'date_histogram': { 'interval': 'day', 'field': 'created' }, 'facet_filter': search._process_filters(vers_f.filters) } version_counts = search.facet_raw(**version_facet).facet_counts() versions_histogram = [] for key in version_counts.keys(): data = dict((p['time'], p['count']) for p in version_counts[key]) if sum([p['count'] for p in version_counts[key]]) < (totals_sum * 0.02): # Skip versions where the number of responses is less than # 2% of the total. continue zero_fill(search_date_start, search_date_end, [data]) versions_histogram.append({ 'name': key, 'label': key, 'data': sorted(data.items()), 'lines': { 'show': True, 'fill': False }, 'points': { 'show': True }, }) return render( request, template, { 'start_date': search_date_start, 'end_date': search_date_end, 'current_search': current_search, 'platforms_histogram': platforms_histogram, 'versions_histogram': versions_histogram, 'histogram': histogram, 'product': prod })
def dashboard(request): template = 'analytics/dashboard.html' output_format = request.GET.get('format', None) page = smart_int(request.GET.get('page', 1), 1) # Note: If we add additional querystring fields, we need to add # them to generate_dashboard_url. search_happy = request.GET.get('happy', None) search_platform = request.GET.get('platform', None) search_locale = request.GET.get('locale', None) search_product = request.GET.get('product', None) search_version = request.GET.get('version', None) search_query = request.GET.get('q', None) search_date_start = smart_date(request.GET.get('date_start', None), fallback=None) search_date_end = smart_date(request.GET.get('date_end', None), fallback=None) search_bigram = request.GET.get('bigram', None) selected = request.GET.get('selected', None) filter_data = [] current_search = {'page': page} search = ResponseMappingType.search() f = F() # If search happy is '0' or '1', set it to False or True, respectively. search_happy = {'0': False, '1': True}.get(search_happy, None) if search_happy in [False, True]: f &= F(happy=search_happy) current_search['happy'] = int(search_happy) def unknown_to_empty(text): """Convert "Unknown" to "" to support old links""" return u'' if text.lower() == u'unknown' else text if search_platform is not None: f &= F(platform=unknown_to_empty(search_platform)) current_search['platform'] = search_platform if search_locale is not None: f &= F(locale=unknown_to_empty(search_locale)) current_search['locale'] = search_locale if search_product is not None: f &= F(product=unknown_to_empty(search_product)) current_search['product'] = search_product if search_version is not None: # Note: We only filter on version if we're filtering on # product. f &= F(version=unknown_to_empty(search_version)) current_search['version'] = search_version if search_date_start is None and search_date_end is None: selected = '7d' if search_date_end is None: search_date_end = date.today() if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') f &= F(created__lte=search_date_end) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') f &= F(created__gte=search_date_start) if search_query: current_search['q'] = search_query search = search.query(description__sqs=search_query) if search_bigram is not None: f &= F(description_bigrams=search_bigram) filter_data.append({ 'display': _('Bigram'), 'name': 'bigram', 'options': [{ 'count': 'all', 'name': search_bigram, 'display': search_bigram, 'value': search_bigram, 'checked': True }] }) search = search.filter(f).order_by('-created') # If the user asked for a feed, give him/her a feed! if output_format == 'atom': return generate_atom_feed(request, search) elif output_format == 'json': return generate_json_feed(request, search) # Search results and pagination if page < 1: page = 1 page_count = 20 start = page_count * (page - 1) end = start + page_count search_count = search.count() opinion_page = search[start:end] # Navigation facet data facets = search.facet('happy', 'platform', 'locale', 'product', 'version', filtered=bool(search._process_filters(f.filters))) # This loop does two things. First it maps 'T' -> True and 'F' -> # False. This is probably something EU should be doing for # us. Second, it restructures the data into a more convenient # form. counts = { 'happy': {}, 'platform': {}, 'locale': {}, 'product': {}, 'version': {} } for param, terms in facets.facet_counts().items(): for term in terms: name = term['term'] if name.upper() == 'T': name = True elif name.upper() == 'F': name = False counts[param][name] = term['count'] def empty_to_unknown(text): return _('Unknown') if text == u'' else text filter_data.extend([ counts_to_options(counts['happy'].items(), name='happy', display=_('Sentiment'), display_map={ True: _('Happy'), False: _('Sad') }, value_map={ True: 1, False: 0 }, checked=search_happy), counts_to_options(counts['product'].items(), name='product', display=_('Product'), display_map=empty_to_unknown, checked=search_product) ]) # Only show the version if we're showing a specific # product. if search_product: filter_data.append( counts_to_options(counts['version'].items(), name='version', display=_('Version'), display_map=empty_to_unknown, checked=search_version)) else: filter_data.append({ 'display': _('Version'), 'note': _('Select product to see version facet') }) filter_data.extend([ counts_to_options(counts['platform'].items(), name='platform', display=_('Platform'), display_map=empty_to_unknown, checked=search_platform), counts_to_options(counts['locale'].items(), name='locale', display=_('Locale'), checked=search_locale, display_map=locale_name), ]) # Histogram data happy_data = [] sad_data = [] happy_f = f & F(happy=True) sad_f = f & F(happy=False) histograms = search.facet_raw( happy={ 'date_histogram': { 'interval': 'day', 'field': 'created' }, 'facet_filter': search._process_filters(happy_f.filters) }, sad={ 'date_histogram': { 'interval': 'day', 'field': 'created' }, 'facet_filter': search._process_filters(sad_f.filters) }, ).facet_counts() # p['time'] is number of milliseconds since the epoch. Which is # convenient, because that is what the front end wants. happy_data = dict((p['time'], p['count']) for p in histograms['happy']) sad_data = dict((p['time'], p['count']) for p in histograms['sad']) zero_fill(search_date_start, search_date_end, [happy_data, sad_data]) histogram = [ { 'label': _('Happy'), 'name': 'happy', 'data': sorted(happy_data.items()) }, { 'label': _('Sad'), 'name': 'sad', 'data': sorted(sad_data.items()) }, ] return render( request, template, { 'opinions': opinion_page, 'opinion_count': search_count, 'filter_data': filter_data, 'histogram': histogram, 'page': page, 'prev_page': page - 1 if start > 0 else None, 'next_page': page + 1 if end < search_count else None, 'current_search': current_search, 'selected': selected, 'atom_url': generate_dashboard_url(request), })
def dashboard(request): template = 'analytics/dashboard.html' output_format = request.GET.get('format', None) page = smart_int(request.GET.get('page', 1), 1) # Note: If we add additional querystring fields, we need to add # them to generate_dashboard_url. search_happy = request.GET.get('happy', None) search_platform = request.GET.get('platform', None) search_locale = request.GET.get('locale', None) search_product = request.GET.get('product', None) search_version = request.GET.get('version', None) search_query = request.GET.get('q', None) search_date_start = smart_date( request.GET.get('date_start', None), fallback=None) search_date_end = smart_date( request.GET.get('date_end', None), fallback=None) search_bigram = request.GET.get('bigram', None) selected = request.GET.get('selected', None) filter_data = [] current_search = {'page': page} search = ResponseMappingType.search() f = F() # If search happy is '0' or '1', set it to False or True, respectively. search_happy = {'0': False, '1': True}.get(search_happy, None) if search_happy in [False, True]: f &= F(happy=search_happy) current_search['happy'] = int(search_happy) def unknown_to_empty(text): """Convert "Unknown" to "" to support old links""" return u'' if text.lower() == u'unknown' else text if search_platform is not None: f &= F(platform=unknown_to_empty(search_platform)) current_search['platform'] = search_platform if search_locale is not None: f &= F(locale=unknown_to_empty(search_locale)) current_search['locale'] = search_locale if search_product is not None: f &= F(product=unknown_to_empty(search_product)) current_search['product'] = search_product if search_version is not None: # Note: We only filter on version if we're filtering on # product. f &= F(version=unknown_to_empty(search_version)) current_search['version'] = search_version if search_date_start is None and search_date_end is None: selected = '7d' if search_date_end is None: search_date_end = datetime.now() if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') # Add one day, so that the search range includes the entire day. end = search_date_end + timedelta(days=1) # Note 'less than', not 'less than or equal', because of the added # day above. f &= F(created__lt=end) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') f &= F(created__gte=search_date_start) if search_query: current_search['q'] = search_query es_query = generate_query_parsed('description', search_query) search = search.query_raw(es_query) if search_bigram is not None: f &= F(description_bigrams=search_bigram) filter_data.append({ 'display': _('Bigram'), 'name': 'bigram', 'options': [{ 'count': 'all', 'name': search_bigram, 'display': search_bigram, 'value': search_bigram, 'checked': True }] }) search = search.filter(f).order_by('-created') # If the user asked for a feed, give him/her a feed! if output_format == 'atom': return generate_atom_feed(request, search) elif output_format == 'json': return generate_json_feed(request, search) # Search results and pagination if page < 1: page = 1 page_count = 20 start = page_count * (page - 1) end = start + page_count search_count = search.count() opinion_page = search[start:end] # Navigation facet data facets = search.facet( 'happy', 'platform', 'locale', 'product', 'version', filtered=bool(search._process_filters(f.filters))) # This loop does two things. First it maps 'T' -> True and 'F' -> # False. This is probably something EU should be doing for # us. Second, it restructures the data into a more convenient # form. counts = { 'happy': {}, 'platform': {}, 'locale': {}, 'product': {}, 'version': {} } for param, terms in facets.facet_counts().items(): for term in terms: name = term['term'] if name == 'T': name = True elif name == 'F': name = False counts[param][name] = term['count'] def empty_to_unknown(text): return _('Unknown') if text == u'' else text filter_data.extend([ counts_to_options( counts['happy'].items(), name='happy', display=_('Sentiment'), display_map={True: _('Happy'), False: _('Sad')}, value_map={True: 1, False: 0}, checked=search_happy), counts_to_options( counts['product'].items(), name='product', display=_('Product'), display_map=empty_to_unknown, checked=search_product) ]) # Only show the version if we're showing a specific # product. if search_product: filter_data.append( counts_to_options( counts['version'].items(), name='version', display=_('Version'), display_map=empty_to_unknown, checked=search_version) ) filter_data.extend( [ counts_to_options( counts['platform'].items(), name='platform', display=_('Platform'), display_map=empty_to_unknown, checked=search_platform), counts_to_options( counts['locale'].items(), name='locale', display=_('Locale'), checked=search_locale, display_map=locale_name), ] ) # Histogram data happy_data = [] sad_data = [] happy_f = f & F(happy=True) sad_f = f & F(happy=False) histograms = search.facet_raw( happy={ 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(happy_f.filters) }, sad={ 'date_histogram': {'interval': 'day', 'field': 'created'}, 'facet_filter': search._process_filters(sad_f.filters) }, ).facet_counts() # p['time'] is number of milliseconds since the epoch. Which is # convenient, because that is what the front end wants. happy_data = dict((p['time'], p['count']) for p in histograms['happy']) sad_data = dict((p['time'], p['count']) for p in histograms['sad']) zero_fill(search_date_start, search_date_end, [happy_data, sad_data]) histogram = [ {'label': _('Happy'), 'name': 'happy', 'data': sorted(happy_data.items())}, {'label': _('Sad'), 'name': 'sad', 'data': sorted(sad_data.items())}, ] return render(request, template, { 'opinions': opinion_page, 'opinion_count': search_count, 'filter_data': filter_data, 'histogram': histogram, 'page': page, 'prev_page': page - 1 if start > 0 else None, 'next_page': page + 1 if end < search_count else None, 'current_search': current_search, 'selected': selected, 'atom_url': generate_dashboard_url(request), })
def test_empty_string(self): eq_(None, smart_date(''))
def analytics_search(request): template = 'analytics/analyzer/search.html' output_format = request.GET.get('format', None) page = smart_int(request.GET.get('page', 1), 1) # Note: If we add additional querystring fields, we need to add # them to generate_dashboard_url. search_happy = request.GET.get('happy', None) search_has_email = request.GET.get('has_email', None) search_platform = request.GET.get('platform', None) search_locale = request.GET.get('locale', None) search_country = request.GET.get('country', None) search_product = request.GET.get('product', None) search_domain = request.GET.get('domain', None) search_api = smart_int(request.GET.get('api', None), fallback=None) search_version = request.GET.get('version', None) search_query = request.GET.get('q', None) search_date_start = smart_date( request.GET.get('date_start', None), fallback=None) search_date_end = smart_date( request.GET.get('date_end', None), fallback=None) search_bigram = request.GET.get('bigram', None) search_source = request.GET.get('source', None) search_campaign = request.GET.get('campaign', None) search_organic = request.GET.get('organic', None) selected = request.GET.get('selected', None) filter_data = [] current_search = {'page': page} search = ResponseMappingType.search() f = F() # If search happy is '0' or '1', set it to False or True, respectively. search_happy = {'0': False, '1': True}.get(search_happy, None) if search_happy in [False, True]: f &= F(happy=search_happy) current_search['happy'] = int(search_happy) # If search has_email is '0' or '1', set it to False or True, # respectively. search_has_email = {'0': False, '1': True}.get(search_has_email, None) if search_has_email in [False, True]: f &= F(has_email=search_has_email) current_search['has_email'] = int(search_has_email) def unknown_to_empty(text): """Convert "Unknown" to "" to support old links""" return u'' if text.lower() == u'unknown' else text if search_platform is not None: f &= F(platform=unknown_to_empty(search_platform)) current_search['platform'] = search_platform if search_locale is not None: f &= F(locale=unknown_to_empty(search_locale)) current_search['locale'] = search_locale if search_product is not None: f &= F(product=unknown_to_empty(search_product)) current_search['product'] = search_product # Only show the version if there's a product. if search_version is not None: # Note: We only filter on version if we're filtering on # product. f &= F(version=unknown_to_empty(search_version)) current_search['version'] = search_version # Only show the country if the product is Firefox OS. if search_country is not None and search_product == 'Firefox OS': f &= F(country=unknown_to_empty(search_country)) current_search['country'] = search_country if search_domain is not None: f &= F(url_domain=unknown_to_empty(search_domain)) current_search['domain'] = search_domain if search_api is not None: f &= F(api=search_api) current_search['api'] = search_api if search_date_start is None and search_date_end is None: selected = '7d' if search_date_end is None: search_date_end = datetime.now() if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') # Add one day, so that the search range includes the entire day. end = search_date_end + timedelta(days=1) # Note 'less than', not 'less than or equal', because of the added # day above. f &= F(created__lt=end) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') f &= F(created__gte=search_date_start) if search_query: current_search['q'] = search_query search = search.query(description__sqs=search_query) if search_bigram is not None: f &= F(description_bigrams=search_bigram) filter_data.append({ 'display': 'Bigram', 'name': 'bigram', 'options': [{ 'count': 'all', 'name': search_bigram, 'display': search_bigram, 'value': search_bigram, 'checked': True }] }) if search_source is not None: f &= F(source=search_source) current_search['source'] = search_source if search_campaign is not None: f &= F(campaign=search_campaign) current_search['campaign'] = search_campaign search_organic = {'0': False, '1': True}.get(search_organic, None) if search_organic in [False, True]: f &= F(organic=search_organic) current_search['organic'] = int(search_organic) search = search.filter(f).order_by('-created') # If they're asking for a CSV export, then send them to the export # screen. if output_format == 'csv': return _analytics_search_export(request, search) # Search results and pagination if page < 1: page = 1 page_count = 50 start = page_count * (page - 1) end = start + page_count search_count = search.count() search_results = search.values_list('id')[start:end] opinion_page_ids = [mem[0][0] for mem in search_results] # We convert what we get back from ES to what's in the db so we # can get all the information. opinion_page = Response.objects.filter(id__in=opinion_page_ids) # Navigation facet data # This loop does two things. First it maps 'T' -> True and 'F' -> # False. This is probably something EU should be doing for # us. Second, it restructures the data into a more convenient # form. counts = { 'happy': {}, 'has_email': {}, 'platform': {}, 'locale': {}, 'country': {}, 'product': {}, 'version': {}, 'url_domain': {}, 'api': {}, 'source': {}, 'campaign': {}, 'organic': {}, } facets = search.facet(*(counts.keys()), filtered=bool(search._process_filters(f.filters)), size=25) for param, terms in facets.facet_counts().items(): for term in terms: name = term['term'] if name == 'T': name = True elif name == 'F': name = False counts[param][name] = term['count'] def empty_to_unknown(text): return 'Unknown' if text == u'' else text filter_data.extend([ counts_to_options( counts['happy'].items(), name='happy', display='Sentiment', display_map={True: 'Happy', False: 'Sad'}, value_map={True: 1, False: 0}, checked=search_happy), counts_to_options( counts['has_email'].items(), name='has_email', display='Has email', display_map={True: 'Yes', False: 'No'}, value_map={True: 1, False: 0}, checked=search_has_email), counts_to_options( counts['product'].items(), name='product', display='Product', display_map=empty_to_unknown, checked=search_product) ]) # Only show the version if we're showing a specific # product. if search_product: filter_data.append( counts_to_options( counts['version'].items(), name='version', display='Version', display_map=empty_to_unknown, checked=search_version) ) # Only show the country if the product is Firefox OS. if search_product == 'Firefox OS': filter_data.append( counts_to_options( counts['country'].items(), name='country', display='Country', checked=search_country, display_map=country_name), ) filter_data.extend( [ counts_to_options( counts['platform'].items(), name='platform', display='Platform', display_map=empty_to_unknown, checked=search_platform), counts_to_options( counts['locale'].items(), name='locale', display='Locale', checked=search_locale, display_map=locale_name), counts_to_options( counts['url_domain'].items(), name='domain', display='Domain', checked=search_domain, display_map=empty_to_unknown), counts_to_options( counts['api'].items(), name='api', display='API version', checked=search_api, display_map=empty_to_unknown), counts_to_options( counts['organic'].items(), name='organic', display='Organic', display_map={True: 'Yes', False: 'No'}, value_map={True: 1, False: 0}, checked=search_organic), counts_to_options( counts['source'].items(), name='source', display='Source', checked=search_source, display_map=empty_to_unknown), counts_to_options( counts['campaign'].items(), name='campaign', display='Campaign', checked=search_campaign, display_map=empty_to_unknown), ] ) return render(request, template, { 'opinions': opinion_page, 'opinion_count': search_count, 'filter_data': filter_data, 'page': page, 'prev_page': page - 1 if start > 0 else None, 'next_page': page + 1 if end < search_count else None, 'current_search': current_search, 'selected': selected, })
def test_fallback(self): eq_('Hullaballo', smart_date('', fallback='Hullaballo'))
def get(self, request): """Returns JSON feed of first 10000 results This feels like a duplication of the front-page dashboard search logic, but it's separate which allows us to handle multiple values. """ search = models.ResponseMappingType.search() f = F() if "happy" in request.GET: happy = {"0": False, "1": True}.get(request.GET["happy"], None) if happy is not None: f &= F(happy=happy) if "platforms" in request.GET: platforms = request.GET["platforms"].split(",") if platforms: f &= F(platform__in=platforms) if "locales" in request.GET: locales = request.GET["locales"].split(",") if locales: f &= F(locale__in=locales) if "products" in request.GET: products = request.GET["products"].split(",") if products: f &= F(product__in=products) if "versions" in request.GET: versions = request.GET["versions"].split(",") if versions: f &= F(version__in=versions) date_start = smart_date(request.GET.get("date_start", None)) date_end = smart_date(request.GET.get("date_end", None)) delta = smart_timedelta(request.GET.get("date_delta", None)) if delta is not None: if date_end is not None: date_start = date_end - delta elif date_start is not None: date_end = date_start + delta else: date_end = date.today() date_start = date_end - delta # We restrict public API access to the last 6 months. six_months_ago = date.today() - timedelta(days=180) if date_start: date_start = max(six_months_ago, date_start) f &= F(created__gte=date_start) if date_end: date_end = max(six_months_ago, date_end) f &= F(created__lte=date_end) search = search.filter(f) search_query = request.GET.get("q", None) if search_query is not None: search = search.query(description__sqs=search_query) # FIXME: Probably want to make this specifyable search = search.order_by("-created") # Explicitly include only publicly visible fields search = search.values_dict(models.ResponseMappingType.public_fields()) maximum = smart_int(request.GET.get("max", None)) maximum = maximum or 1000 maximum = min(max(1, maximum), 10000) responses = models.ResponseMappingType.reshape(search[:maximum]) return rest_framework.response.Response({"count": len(responses), "results": list(responses)})
def analytics_search(request): template = 'analytics/analyzer/search.html' output_format = request.GET.get('format', None) page = smart_int(request.GET.get('page', 1), 1) # Note: If we add additional querystring fields, we need to add # them to generate_dashboard_url. search_happy = request.GET.get('happy', None) search_has_email = request.GET.get('has_email', None) search_platform = request.GET.get('platform', None) search_locale = request.GET.get('locale', None) search_country = request.GET.get('country', None) search_product = request.GET.get('product', None) search_domain = request.GET.get('domain', None) search_api = smart_int(request.GET.get('api', None), fallback=None) search_version = request.GET.get('version', None) search_query = request.GET.get('q', None) search_date_start = smart_date(request.GET.get('date_start', None), fallback=None) search_date_end = smart_date(request.GET.get('date_end', None), fallback=None) search_bigram = request.GET.get('bigram', None) search_source = request.GET.get('source', None) search_campaign = request.GET.get('campaign', None) search_organic = request.GET.get('organic', None) selected = request.GET.get('selected', None) filter_data = [] current_search = {'page': page} search = ResponseMappingType.search() f = F() # If search happy is '0' or '1', set it to False or True, respectively. search_happy = {'0': False, '1': True}.get(search_happy, None) if search_happy in [False, True]: f &= F(happy=search_happy) current_search['happy'] = int(search_happy) # If search has_email is '0' or '1', set it to False or True, # respectively. search_has_email = {'0': False, '1': True}.get(search_has_email, None) if search_has_email in [False, True]: f &= F(has_email=search_has_email) current_search['has_email'] = int(search_has_email) def unknown_to_empty(text): """Convert "Unknown" to "" to support old links""" return u'' if text.lower() == u'unknown' else text if search_platform is not None: f &= F(platform=unknown_to_empty(search_platform)) current_search['platform'] = search_platform if search_locale is not None: f &= F(locale=unknown_to_empty(search_locale)) current_search['locale'] = search_locale if search_product is not None: f &= F(product=unknown_to_empty(search_product)) current_search['product'] = search_product # Only show the version if there's a product. if search_version is not None: # Note: We only filter on version if we're filtering on # product. f &= F(version=unknown_to_empty(search_version)) current_search['version'] = search_version # Only show the country if the product is Firefox OS. if search_country is not None and search_product == 'Firefox OS': f &= F(country=unknown_to_empty(search_country)) current_search['country'] = search_country if search_domain is not None: f &= F(url_domain=unknown_to_empty(search_domain)) current_search['domain'] = search_domain if search_api is not None: f &= F(api=search_api) current_search['api'] = search_api if search_date_start is None and search_date_end is None: selected = '7d' if search_date_end is None: search_date_end = datetime.now() if search_date_start is None: search_date_start = search_date_end - timedelta(days=7) current_search['date_end'] = search_date_end.strftime('%Y-%m-%d') # Add one day, so that the search range includes the entire day. end = search_date_end + timedelta(days=1) # Note 'less than', not 'less than or equal', because of the added # day above. f &= F(created__lt=end) current_search['date_start'] = search_date_start.strftime('%Y-%m-%d') f &= F(created__gte=search_date_start) if search_query: current_search['q'] = search_query search = search.query(description__sqs=search_query) if search_bigram is not None: f &= F(description_bigrams=search_bigram) filter_data.append({ 'display': 'Bigram', 'name': 'bigram', 'options': [{ 'count': 'all', 'name': search_bigram, 'display': search_bigram, 'value': search_bigram, 'checked': True }] }) if search_source is not None: f &= F(source=search_source) current_search['source'] = search_source if search_campaign is not None: f &= F(campaign=search_campaign) current_search['campaign'] = search_campaign search_organic = {'0': False, '1': True}.get(search_organic, None) if search_organic in [False, True]: f &= F(organic=search_organic) current_search['organic'] = int(search_organic) search = search.filter(f).order_by('-created') # If they're asking for a CSV export, then send them to the export # screen. if output_format == 'csv': return _analytics_search_export(request, search) # Search results and pagination if page < 1: page = 1 page_count = 50 start = page_count * (page - 1) end = start + page_count search_count = search.count() opinion_page_ids = [mem[0] for mem in search.values_list('id')[start:end]] # We convert what we get back from ES to what's in the db so we # can get all the information. opinion_page = Response.objects.filter(id__in=opinion_page_ids) # Navigation facet data # This loop does two things. First it maps 'T' -> True and 'F' -> # False. This is probably something EU should be doing for # us. Second, it restructures the data into a more convenient # form. counts = { 'happy': {}, 'has_email': {}, 'platform': {}, 'locale': {}, 'country': {}, 'product': {}, 'version': {}, 'url_domain': {}, 'api': {}, 'source': {}, 'campaign': {}, 'organic': {}, } facets = search.facet(*(counts.keys()), filtered=bool(search._process_filters(f.filters)), size=25) for param, terms in facets.facet_counts().items(): for term in terms: name = term['term'] if name == 'T': name = True elif name == 'F': name = False counts[param][name] = term['count'] def empty_to_unknown(text): return 'Unknown' if text == u'' else text filter_data.extend([ counts_to_options(counts['happy'].items(), name='happy', display='Sentiment', display_map={ True: 'Happy', False: 'Sad' }, value_map={ True: 1, False: 0 }, checked=search_happy), counts_to_options(counts['has_email'].items(), name='has_email', display='Has email', display_map={ True: 'Yes', False: 'No' }, value_map={ True: 1, False: 0 }, checked=search_has_email), counts_to_options(counts['product'].items(), name='product', display='Product', display_map=empty_to_unknown, checked=search_product) ]) # Only show the version if we're showing a specific # product. if search_product: filter_data.append( counts_to_options(counts['version'].items(), name='version', display='Version', display_map=empty_to_unknown, checked=search_version)) # Only show the country if the product is Firefox OS. if search_product == 'Firefox OS': filter_data.append( counts_to_options(counts['country'].items(), name='country', display='Country', checked=search_country, display_map=country_name), ) filter_data.extend([ counts_to_options(counts['platform'].items(), name='platform', display='Platform', display_map=empty_to_unknown, checked=search_platform), counts_to_options(counts['locale'].items(), name='locale', display='Locale', checked=search_locale, display_map=locale_name), counts_to_options(counts['url_domain'].items(), name='domain', display='Domain', checked=search_domain, display_map=empty_to_unknown), counts_to_options(counts['api'].items(), name='api', display='API version', checked=search_api, display_map=empty_to_unknown), counts_to_options(counts['organic'].items(), name='organic', display='Organic', display_map={ True: 'Yes', False: 'No' }, value_map={ True: 1, False: 0 }, checked=search_organic), counts_to_options(counts['source'].items(), name='source', display='Source', checked=search_source, display_map=empty_to_unknown), counts_to_options(counts['campaign'].items(), name='campaign', display='Campaign', checked=search_campaign, display_map=empty_to_unknown), ]) return render( request, template, { 'opinions': opinion_page, 'opinion_count': search_count, 'filter_data': filter_data, 'page': page, 'prev_page': page - 1 if start > 0 else None, 'next_page': page + 1 if end < search_count else None, 'current_search': current_search, 'selected': selected, })