from lasagne.layers import get_all_params from lasagne.objectives import categorical_accuracy, categorical_crossentropy from lasagne.updates import adam from lasagne.utils import floatX from theano import tensor as T import flags from at import adversarial_training from data import batch_iterator, mnist_load, select_balanced_subset from deepfool import deepfool from models import create_network, with_end_points from utils import (build_result_str, save_images, save_network, setup_train_experiment) # experiment parameters flags.DEFINE_integer("seed", 1, "experiment seed") flags.DEFINE_string("name", None, "name of the experiment") flags.DEFINE_string("data_dir", "data", "path to data") flags.DEFINE_string("train_dir", "runs", "path to working dir") # gan model parameters flags.DEFINE_string("model", "mlp", "model name (mlp or mlp_with_bn)") flags.DEFINE_string("layer_dims", "1000-1000-1000-10", "dimensions of fully-connected layers") flags.DEFINE_bool("use_dropout", False, "whenever to use dropout or not") flags.DEFINE_float("lmbd", 1.0, "regularization coefficient") flags.DEFINE_float("epsilon", 0.2, "epsilon for generative fgsm perturbation") # adversary parameters flags.DEFINE_integer("deepfool_iter", 25, "maximum number of deepfool iterations")
"""Benchmark script for TensorFlow. See the README for more information. """ from __future__ import print_function #from absl import app from absl import flags as absl_flags import tensorflow as tf import flags flags.DEFINE_string('network_dir', None, 'network file path.') flags.DEFINE_string('network', 'network.py', 'network file name') flags.DEFINE_string('data_dir', None, 'dataset location') flags.DEFINE_integer('small_chunk', 1, 'accumulate gradients.') flags.DEFINE_string('memory_saving_method', None, 'setup the memory saving method, 1. recomputing 2. TBD ') flags.DEFINE_enum('lr_policy', 'multistep', ('multistep', 'exp'), 'learning_rate policy') flags.DEFINE_boolean('aug_flip', True, 'whether randomly flip left or right dataset') flags.DEFINE_integer( 'stop_accu_epoch', 0, 'early stop when accuracy does not increase 1% for' 'numbers of epochs') flags.DEFINE_boolean('save_stop', True, 'whether to save checkpoint when killing process') flags.DEFINE_list( 'aug_list', [], 'Specify a list of augmentation function names to apply ' 'during training.')
_VALID_INPUT_FEATURES = frozenset({ data.SEQUENCE_ONE_HOT, data.SEQUENCE_KMER_COUNT, }) TUNER_LOSS_LOSS = 'loss' TUNER_LOSS_AUC = 'auc/true_top_1p' TUNER_GOAL_MAX = 'MAXIMIZE' TUNER_GOAL_MIN = 'MINIMIZE' TUNER_LOSS_TO_GOAL = { TUNER_LOSS_LOSS: TUNER_GOAL_MIN, TUNER_LOSS_AUC: TUNER_GOAL_MAX, } flags.DEFINE_integer('task', 0, 'Task id when running online') flags.DEFINE_string('master', '', 'TensorFlow master to use') flags.DEFINE_string('input_dir', None, 'Path to input data.') flags.DEFINE_string( 'affinity_target_map', '', 'Name of the affinity map from count values to affinity values. ' 'Needed only if using input_dir and running inference or using ' 'microarray values.') flags.DEFINE_enum( 'dataset', None, sorted(config.INPUT_DATA_DIRS), 'Name of dataset with known input_dir on which to train. Either input_dir ' 'or dataset is required.') flags.DEFINE_integer('val_fold', 0, 'Fold to use for validation.') flags.DEFINE_string('save_base', None, 'Base path to save any output or weights.')
--output_name=xxx/base30_1B_inference_top2k """ # pylint: enable=line-too-long # Google internal import apache_beam as beam import runner import app import flags from ..learning import eval_feedforward from ..utils import pool FLAGS = flags.FLAGS flags.DEFINE_integer('num_batches', 1000, 'Number of batches to run') flags.DEFINE_integer('batch_size', 10000, 'Number of sequences per batch') flags.DEFINE_integer('num_to_save', 2000, 'The number of top results to save.') flags.DEFINE_string('target_name', None, 'The name of the target protein for the inference.') flags.DEFINE_string('model_dir', None, 'The path to base trained model directory.') flags.DEFINE_string('checkpoint_path', None, 'String path to the checkpoint of the model.') flags.DEFINE_string('output_name', None, 'The name of the output file.') flags.DEFINE_integer('sequence_length', 40, 'The length of sequences to test.') flags.DEFINE_string('affinity_target_map', None, 'Name of affinity target map') _METRICS_NAMESPACE = 'SearchInference'
from ..util import measurement_pb2 from ..preprocess import utils class Error(Exception): pass FLAGS = flags.FLAGS flags.DEFINE_string("fastq1", None, "Path to the first fastq file.") flags.DEFINE_string("fastq2", None, "Path to the second fastq file for paired-end " "sequencing, or None for single end") flags.DEFINE_integer("measurement_id", None, "The measurement data set ID for this fastq pair, from " "the experiment proto") flags.DEFINE_integer("sequence_length", 40, "Expected length of each sequence read") flags.DEFINE_string("output_name", "xxx" "aptitude", "Path and name for the output sstable") flags.DEFINE_integer("base_qual_threshold", 20, "integer indicating the " "lowest quality (on scale from 0 to 40) for a single " "base to be considered acceptable") flags.DEFINE_integer("bad_base_threshold", 5, "integer indicating the maximum " "number of bad bases before a read is bad quality") flags.DEFINE_float("avg_qual_threshold", 30.0, "float indicating the mean " "quality across the whole read to be considered good") flags.DEFINE_integer("num_reads", 99999999999, "The number of reads to include " "from each fastq file.")
import numpy as np import theano from theano import tensor as T from lasagne.objectives import categorical_accuracy import flags from at import fast_gradient_perturbation from data import batch_iterator, mnist_load, select_balanced_subset from deepfool import deepfool from models import create_network, with_end_points from utils import (load_network, load_training_params, build_result_str, save_images) flags.DEFINE_string("load_dir", None, "path to load checkpoint from") flags.DEFINE_integer("load_epoch", None, "epoch for which restore model") flags.DEFINE_string("working_dir", "test", "path to working dir") flags.DEFINE_bool("sort_labels", True, "sort labels") flags.DEFINE_integer("batch_size", 100, "batch_index size (default: 100)") flags.DEFINE_float("fgsm_epsilon", 0.2, "fast gradient epsilon (default: 0.2)") flags.DEFINE_integer("deepfool_iter", 50, "maximum number of deepfool iterations (default: 25)") flags.DEFINE_float("deepfool_clip", 0.5, "perturbation clip during search (default: 0.1)") flags.DEFINE_float("deepfool_overshoot", 0.02, "multiplier for final perturbation") flags.DEFINE_integer("summary_frequency", 10, "summarize frequency") FLAGS = flags.FLAGS logger = logging.getLogger()
import cloud import flags import multiprocessing from nova.cloudpipe.pipelib import CloudPipe import urllib import logging _log = logging.getLogger("api") _log.setLevel(logging.WARN) FLAGS = flags.FLAGS flags.DEFINE_integer('cc_port', 8773, 'cloud controller port') _c2u = re.compile('(((?<=[a-z])[A-Z])|([A-Z](?![A-Z]|$)))') def _camelcase_to_underscore(str): return _c2u.sub(r'_\1', str).lower().strip('_') def _underscore_to_camelcase(str): return ''.join([x[:1].upper() + x[1:] for x in str.split('_')]) def _underscore_to_xmlcase(str): res = _underscore_to_camelcase(str)
flags.DEFINE_string('dataset', 'cora', '[cora, citeseer]') flags.DEFINE_string('subgraph', 'subgraph/', 'Directory of all subgraphs, each file is a subgraph') flags.DEFINE_string('graph', 'graph.txt', 'Edge list of the complete graph') flags.DEFINE_string('kernel', 'kernel.json', 'Kernels to be matched') flags.DEFINE_string('query', 'query', 'Used to create query files used by SubMatch') flags.DEFINE_string('meta', 'meta/', 'Directory of matched instances of kernels') flags.DEFINE_string('data', 'data.txt', None) flags.DEFINE_string('feature', 'feature.txt', None) flags.DEFINE_string('label', 'label.txt', None) flags.DEFINE_boolean('use_feature', True, 'Use feature or not') flags.DEFINE_boolean('use_embedding', True, 'Use embedding or not') flags.DEFINE_integer('feat_dim', -1, None) flags.DEFINE_list( 'node_dim', [256], 'Dimension of hidden layers between feature and node embedding') flags.DEFINE_list( 'instance_h_dim', [256], 'Dimension of hidden layers between node embedding and instance embedding, last element is the dimension of instance embedding' ) flags.DEFINE_list( 'graph_h_dim', [128], 'Dimension of hidden layers between instance embedding and subgraph embedding, last element is the dimension of subgraph embedding' ) flags.DEFINE_float('keep_prob', 0.6, 'Used for dropout') flags.DEFINE_list('kernel_sizes', [1], 'List of number of nodes in kernel') flags.DEFINE_string('pooling', 'max', '[max, average, sum]')