# http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import chain import flash from flash.core.integrations.fiftyone import visualize from flash.core.utilities.imports import example_requires from flash.image import ObjectDetectionData, ObjectDetector from flash.image.detection.serialization import FiftyOneDetectionLabels example_requires("image") import icedata # noqa: E402 # 1. Create the DataModule data_dir = icedata.fridge.load_data() datamodule = ObjectDetectionData.from_folders( train_folder=data_dir, predict_folder=data_dir, val_split=0.1, image_size=128, parser=icedata.fridge.parser, ) # 2. Build the task
# # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import flash from flash.core.integrations.pytorch_forecasting import convert_predictions from flash.core.utilities.imports import example_requires from flash.tabular.forecasting import TabularForecaster, TabularForecastingData example_requires(["tabular", "matplotlib"]) import matplotlib.pyplot as plt # noqa: E402 import pandas as pd # noqa: E402 from pytorch_forecasting.data import NaNLabelEncoder # noqa: E402 from pytorch_forecasting.data.examples import generate_ar_data # noqa: E402 # Example based on this tutorial: https://pytorch-forecasting.readthedocs.io/en/latest/tutorials/ar.html # 1. Create the DataModule data = generate_ar_data(seasonality=10.0, timesteps=400, n_series=100, seed=42) data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D") max_prediction_length = 20 training_cutoff = data["time_idx"].max() - max_prediction_length
# You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import flash from flash.core.utilities.imports import example_requires from flash.image import FaceDetectionData, FaceDetector example_requires("fastface") import fastface as ff # noqa: E402 # # 1. Create the DataModule train_dataset = ff.dataset.FDDBDataset(source_dir="data/", phase="train") val_dataset = ff.dataset.FDDBDataset(source_dir="data/", phase="val") datamodule = FaceDetectionData.from_datasets(train_dataset=train_dataset, val_dataset=val_dataset, batch_size=2) # # 2. Build the task model = FaceDetector(model="lffd_slim") # # 3. Create the trainer and finetune the model trainer = flash.Trainer(max_epochs=3,
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flash import Trainer from flash.core.data.utils import download_data from flash.core.utilities.imports import example_requires from flash.text import QuestionAnsweringData, QuestionAnsweringTask example_requires("text") import nltk # noqa: E402 nltk.download("punkt") # 1. Create the DataModule download_data("https://pl-flash-data.s3.amazonaws.com/squad_tiny.zip", "./data/") datamodule = QuestionAnsweringData.from_squad_v2( train_file="./data/squad_tiny/train.json", val_file="./data/squad_tiny/val.json", batch_size=4, ) # 2. Build the task
# You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import flash from flash.core.utilities.imports import example_requires from flash.graph import GraphClassificationData, GraphClassifier example_requires("graph") from torch_geometric.datasets import TUDataset # noqa: E402 # 1. Create the DataModule dataset = TUDataset(root="data", name="KKI") datamodule = GraphClassificationData.from_datasets( train_dataset=dataset, val_split=0.1, ) # 2. Build the task model = GraphClassifier(num_features=datamodule.num_features, num_classes=datamodule.num_classes)
# You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import flash from flash.core.utilities.imports import example_requires from flash.tabular.forecasting import TabularForecaster, TabularForecastingData example_requires("tabular") import pandas as pd # noqa: E402 from pytorch_forecasting.data import NaNLabelEncoder # noqa: E402 from pytorch_forecasting.data.examples import generate_ar_data # noqa: E402 # Example based on this tutorial: https://pytorch-forecasting.readthedocs.io/en/latest/tutorials/ar.html # 1. Create the DataModule data = generate_ar_data(seasonality=10.0, timesteps=400, n_series=100, seed=42) data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D") max_encoder_length = 60 max_prediction_length = 20 training_cutoff = data["time_idx"].max() - max_prediction_length