def create_navigation(self, navigation_html, experiment_folder, experiment_path, data): if experiment_folder != "": if os.path.exists(experiment_path + "/custom_flexp_chain.py"): try: custom_flexp_chain = import_by_filename( 'custom_flexp_chain', experiment_path + "/custom_flexp_chain.py") html_chain = custom_flexp_chain.get_chain() html_chain = Chain(html_chain) except: html_chain = Chain([ StringToHtml( "<h2>Error processing custom chain. {}</h2>". format(traceback.format_exc().replace( "\n", "</br>")), title="Error in custom chain") ] + self.html_chain.modules) finally: if "custom_flexp_chain" in sys.modules: del sys.modules["custom_flexp_chain"] else: html_chain = self.html_chain html_chain.process(data) html_chain.close() navigation_html = html_anchor_navigation( experiment_path, experiment_folder, html_chain) + navigation_html return navigation_html
def test_with(self): c = Chain([ Add(13), ]) data = {"input": 10} with c: c.process(data) assert data == {"input": 10, "output": 23}
def test_chain_from_fuction(self): data = {"input": 10} def add(x): x["output"] = x["input"] + 13 c = Chain(add) c.process(data) self.assertEqual(data, {"input": 10, "output": 23}) assert str(c) == "Chain[add]"
def test_time(self): data = {"input": 10} c = Chain([ Add(13), ]) c.process(data) c.close() assert len(c.times) == 1 assert c.iterations == 1 c.process(data) assert c.iterations == 2
def test_chain_inspect_deep(self): data = {"input": {i: i for i in range(11)}} with LogCapture() as l: c = Chain([ inspector.inspect(DummyModule(), stream=True)]) c.process(data) c.close() l.check( ('flexp.flow.flow', 'DEBUG', 'DummyModule.process()'), ('flexp.flow.inspector', 'INFO', 'Data flow structure'), ('flexp.flow.inspector', 'INFO', "{\'input\': {\"<class \'int\'>#11 times (0)\": 0}}"), ('flexp.flow.inspector', 'INFO', 'End of data flow structure'), ('flexp.flow.flow', 'INFO', 'DummyModule average execution time 0.00 sec') )
def test_chain_inspect(self): data = {"input": 20} with LogCapture() as l: c = Chain([ inspector.inspect(Add(10), stream=True)]) c.process(data) c.close() l.check( ('flexp.flow.flow', 'DEBUG', 'Add.process()'), ('flexp.flow.inspector', 'INFO', 'Data flow structure'), ('flexp.flow.inspector', 'INFO', "{'input': 20, 'output': 30}"), ('flexp.flow.inspector', 'INFO', 'End of data flow structure'), ('flexp.flow.flow', 'INFO', 'Add average execution time 0.00 sec') )
def test_chain(self): data = {"input": 10} c = Chain([ Add(13), ]) c.process(data) c.close() self.assertEqual(data, {"input": 10, "output": 23}) assert str(c) == "Chain[Add]" c.add(Mult(2)) assert str(c) == "Chain[Add-Mult]" c.process(data) self.assertEqual(data, {"input": 10, "output": 20})
def test_chain_from_object(self): data = {"input": 10} c = Chain(Add(13)) c.process(data) self.assertEqual(data, {"input": 10, "output": 23}) assert str(c) == "Chain[Add]"
flexp.describe("Query parameter prediction with TF-IDF and linear regression") # Setup logging log.debug("flow setup complete.") # Create the chain to load the data, lowercase and tokenize it. file_name = "example_queries.tsv" data_chain = Chain([ LoadData(file_name), Lowercase(), TfIdf(), ]) # data["id"] should contain all info required to replicate the experiment. data = {"id": file_name} data_chain.process(data) data_chain.close() log.debug("Data chain complete.") # Train and evaluate a classifier train_chain = Chain([ # Create data["train"] and data["dev"] TrainTestSplit(), # Train our classifier on data["train"] Train(), # Evaluate the classifier and store the results in the experiment folder # using flexp.get_file_path("results.csv") Eval(), ]) train_chain.process(data) train_chain.close()
def get(self): experiment_folder = self.get_argument("experiment", default="") experiment_path = path.join(self.experiments_folder, experiment_folder) if not path.isdir(experiment_path): experiment_folder = "" navigation_html = html_navigation(self.experiments_folder, experiment_folder) header_html = "" scripts_html = "" if experiment_folder != "": data = {"experiment_path": experiment_path, "experiment_folder": experiment_folder, "html": [], "header": dict(), "scripts": dict() } # Use custom chain, if present if os.path.exists(experiment_path + "/custom_flexp_chain.py"): try: custom_flexp_chain = import_by_filename('custom_flexp_chain', experiment_path + "/custom_flexp_chain.py") html_chain = custom_flexp_chain.get_chain() html_chain = Chain(html_chain) except: html_chain = Chain([StringToHtml("<h2>Error processing custom chain. {}</h2>" .format(traceback.format_exc().replace("\n", "</br>")), title="Error in custom chain")] + self.html_chain.modules) finally: if "custom_flexp_chain" in sys.modules: del sys.modules["custom_flexp_chain"] else: html_chain = self.html_chain html_chain.process(data) html_chain.close() title_html = "<h1>{}</h1>".format(experiment_folder) content_html = u"\n".join(data['html']) navigation_html = html_anchor_navigation( experiment_path, experiment_folder, html_chain) + navigation_html header_html = u"\n".join(u"\n".join(html_lines) for head_section, html_lines in data["header"].items()) scripts_html = u"\n".join(u"\n".join(script_lines) for script_section, script_lines in data["scripts"].items()) else: title_html = "<h1>Experiments</h1>" content_html = html_table(self.experiments_folder, self.get_metrics_fcn, self.metrics_file) html = self._template.format( title=title_html, navigation=navigation_html, content=content_html, header=header_html, scripts=scripts_html) self.write(html)