import re if __name__ == '__main__': device = get_device() system_train = 'two_spins' system_test = 'two_spins' if system_test in ['ospm', 'two_spins']: size = 16 elif system_test in ['os']: size = 4 else: raise ValueError('unsupported test system') path_train = get_path( ) + f'/dl/datasets/floquet_lindbladian/{system_train}' path_test = get_path() + f'/dl/datasets/floquet_lindbladian/{system_test}' suffix_train = 'ampl(0.5000_0.5000_200)_freq(0.0500_0.0500_200)_phase(0.0000_0.0000_0)' suffix_test = 'ampl(0.5000_0.5000_200)_freq(0.0500_0.0500_200)_phase(1.5708_0.0000_0)' # Models to choose from [resnet, resnet50_2D, alexnet, vgg, squeezenet, densenet, inception] model_name = "resnet" feature_type = 'eval' transforms_type = 'regular' label_type = 'log' model_dir = f'{path_train}/{model_name}_{feature_type}_{transforms_type}_{label_type}_{suffix_train}' num_classes = 1
import os if __name__ == '__main__': device = get_device() system = 'two_spins' if system in ['ospm', 'two_spins']: size = 16 elif system in ['os']: size = 4 else: raise ValueError('unsupported test system') input_size = 224 path = get_path() + f'/dl/datasets/floquet_lindbladian/{system}' num_points = 200 suffix = f'ampl(0.5000_0.5000_{num_points})_freq(0.0500_0.0500_{num_points})_phase(0.0000_0.0000_0)' feature_type = 'eval' transforms_type = 'noNorm' label_type = 'log' if transforms_type == 'regular': transforms_regular = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((input_size, input_size)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])