def _handler(self, request, response): init_process_logger('log.txt') response.outputs['output_log'].file = 'log.txt' response.update_status('Start process', 0) try: LOGGER.info('reading the arguments') resources = archiveextract( resource=rename_complexinputs(request.inputs['resource'])) period = request.inputs['period'] period = period[0].data indices = [inpt.data for inpt in request.inputs['indices']] archive_format = request.inputs['archive_format'][0].data LOGGER.info( "all arguments read in nr of files in resources: {}".foirmat( len(resources))) except Exception as ex: msg = 'failed to read in the arguments: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) try: gbif_url = request.inputs['gbif'][0].data csv_file = download(gbif_url) LOGGER.info('CSV file fetched sucessfully: %s' % csv_file) except Exception as ex: msg = 'failed to fetch GBIF file: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) try: response.update_status('read in latlon coordinates', 10) latlon = sdm.latlon_gbifcsv(csv_file) LOGGER.info('got occurence coordinates %s ' % csv_file) except Exception as ex: msg = 'failed to extract the latlon points from file {}: {}'.format( csv_file, str(ex)) LOGGER.exception(msg) raise Exception(msg) try: response.update_status('plot map', 20) occurence_map = map_gbifoccurrences(latlon) LOGGER.info('GBIF occourence ploted') except Exception as ex: msg = 'failed to plot occurence map: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) ################################# # calculate the climate indices ################################# # get the indices try: response.update_status('start calculation of indices', 30) ncs_indices = sdm.get_indices(resource=resources, indices=indices) LOGGER.info('indice calculation done') except Exception as ex: msg = 'failed to calculate indices: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) LOGGER.info('indice files sorted in dictionary') except Exception as ex: msg = 'failed to sort indices: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) indices_dic = {'dummy': []} ncs_references = [] species_files = [] stat_infos = [] PAmask_pngs = [] response.update_status('Start processing for {} datasets'.format( len(indices_dic.keys()))) for count, key in enumerate(indices_dic.keys()): try: status_nr = 40 + count * 10 response.update_status('Start processing of {}'.format(key), status_nr) ncs = indices_dic[key] LOGGER.info('with {} files'.format(len(ncs))) try: response.update_status('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0]) LOGGER.info('PA mask sucessfully generated') except Exception as ex: msg = 'failed to generate the PA mask: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) try: response.update_status('Ploting PA mask', 25) PAmask_pngs.extend([map_PAmask(PAmask)]) except Exception as ex: msg = 'failed to plot the PA mask: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) LOGGER.info('reference indice calculated {}'.format( ncs_references)) except Exception as ex: msg = 'failed to calculate the reference: {}'.format( str(ex)) LOGGER.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_reference, PAmask) stat_infos.append(gam_info) response.update_status('GAM sucessfully trained', status_nr + 5) except Exception as ex: msg = 'failed to train GAM for {}: {}'.format(key, str(ex)) LOGGER.debug(msg) raise Exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs) response.update_status('prediction done', status_nr + 7) except Exception as ex: msg = 'failed to predict tree occurence: {}'.format( str(ex)) LOGGER.exception(msg) raise Exception(msg) # # try: # response.update_status('land sea mask for predicted data', status_nr + 8) # from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid # mask = invert(isnan(PAmask)) # mask = broadcast_arrays(prediction, mask)[1] # prediction[mask is False] = nan # except: # LOGGER.debug('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs[0], prediction)) LOGGER.info('Favourability written to file') except Exception as ex: msg = 'failed to write species file: {}'.format(str(ex)) LOGGER.debug(msg) raise Exception(msg) except Exception as ex: msg = 'failed to process SDM chain for {} : {}'.format( key, str(ex)) LOGGER.exception(msg) raise Exception(msg) try: archive_indices = archive(ncs_indices, format=archive_format) LOGGER.info('indices added to archive') except Exception as ex: msg = 'failed adding indices to archive: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) archive_indices = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_references = archive(ncs_references, format=archive_format) LOGGER.info('indices reference added to archive') except Exception as ex: msg = 'failed adding reference indices to archive: {}'.format( str(ex)) LOGGER.exception(msg) raise Exception(msg) archive_references = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_prediction = archive(species_files, format=archive_format) LOGGER.info('species_files added to archive') except Exception as ex: msg = 'failed adding species_files indices to archive: {}'.format( str(ex)) LOGGER.exception(msg) raise Exception(msg) try: stat_infosconcat = pdfmerge(stat_infos) LOGGER.debug('pngs {}'.format(PAmask_pngs)) PAmask_png = concat_images(PAmask_pngs, orientation='h') LOGGER.info('stat infos pdfs and mask pngs merged') except Exception as ex: msg = 'failed to concat images: {}'.format(str(ex)) LOGGER.exception(msg) raise Exception(msg) _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') _, PAmask_png = tempfile.mkstemp(suffix='.png', prefix='foobar-', dir='.') # self.output_csv.setValue(csv_file) response.outputs['output_gbif'].file = occurence_map response.outputs['output_PA'].file = PAmask_png response.outputs['output_indices'].file = archive_indices response.outputs['output_reference'].file = archive_references response.outputs['output_prediction'].file = archive_prediction response.outputs['output_info'].file = stat_infosconcat response.update_status('done', 100) return response
def execute(self): from os.path import basename from flyingpigeon import sdm from flyingpigeon.utils import archive, archiveextract # , get_domain from flyingpigeon.visualisation import map_PAmask init_process_logger('log.txt') self.output_log.setValue('log.txt') self.status.set('Start process', 0) try: self.status.set('reading the arguments', 5) resources = archiveextract( self.getInputValues(identifier='input_indices')) csv_file = self.getInputValues(identifier='gbif')[0] period = self.getInputValues(identifier='period') period = period[0] archive_format = self.archive_format.getValue() except: logger.error('failed to read in the arguments') try: self.status.set('read in latlon coordinates', 10) latlon = sdm.latlon_gbifcsv(csv_file) except: logger.exception('failed to extract the latlon points') try: self.status.set('plot map', 20) from flyingpigeon.visualisation import map_gbifoccurrences # latlon = sdm.latlon_gbifdic(gbifdic) occurence_map = map_gbifoccurrences(latlon) except: logger.exception('failed to plot occurence map') # try: # self.status.set('get domain', 30) # domains = set() # for indice in resources: # # get_domain works only if metadata are set in a correct way # domains = domains.union([basename(indice).split('_')[1]]) # if len(domains) == 1: # domain = list(domains)[0] # logger.info('Domain %s found in indices files' % domain) # else: # logger.warn('NOT a single domain in indices files %s' % domains) # except: # logger.exception('failed to get domains') try: # sort indices indices_dic = sdm.sort_indices(resources) logger.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' logger.exception(msg) raise Exception(msg) ncs_references = [] species_files = [] stat_infos = [] PAmask_pngs = [] self.status.set('Start processing for %s Datasets' % len(indices_dic.keys())) for count, key in enumerate(indices_dic.keys()): try: staus_nr = 40 + count * 10 self.status.set('Start processing of %s' % key, staus_nr) ncs = indices_dic[key] logger.info('with %s files' % len(ncs)) try: self.status.set('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0]) logger.info('PA mask sucessfully generated') except: logger.exception('failed to generate the PA mask') try: self.status.set('Ploting PA mask', 25) PAmask_pngs.extend([map_PAmask(PAmask)]) except: logger.exception('failed to plot the PA mask') try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) logger.info('reference indice calculated %s ' % ncs_references) self.status.set('reference indice calculated', staus_nr + 2) except: msg = 'failed to calculate the reference' logger.exception(msg) # raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_reference, PAmask, modelname=key) stat_infos.append(gam_info) self.status.set('GAM sucessfully trained', staus_nr + 5) except: msg = 'failed to train GAM for %s' % (key) logger.exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs) self.status.set('prediction done', staus_nr + 7) except: msg = 'failed to predict tree occurence' logger.exception(msg) # raise Exception(msg) # try: # self.status.set('land sea mask for predicted data', staus_nr + 8) # from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid # mask = invert(isnan(PAmask)) # mask = broadcast_arrays(prediction, mask)[1] # prediction[mask is False] = nan # except: # logger.exception('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs[0], prediction)) logger.info('Favourabillity written to file') except: msg = 'failed to write species file' logger.exception(msg) # raise Exception(msg) except: msg = 'failed to process SDM chain for %s ' % key logger.exception(msg) # raise Exception(msg) try: archive_references = None archive_references = archive(ncs_references, format=archive_format) logger.info('indices 2D added to archive') except: msg = 'failed adding 2D indices to archive' logger.exception(msg) raise Exception(msg) archive_predicion = None try: archive_predicion = archive(species_files, format=archive_format) logger.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' logger.exception(msg) raise Exception(msg) try: from flyingpigeon.visualisation import pdfmerge, concat_images stat_infosconcat = pdfmerge(stat_infos) logger.debug('pngs %s' % PAmask_pngs) PAmask_png = concat_images(PAmask_pngs, orientation='h') logger.info('stat infos pdfs and mask pngs merged') except: logger.exception('failed to concat images') _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') _, PAmask_png = tempfile.mkstemp(suffix='.png', prefix='foobar-', dir='.') self.output_gbif.setValue(occurence_map) self.output_PA.setValue(PAmask_png) self.output_reference.setValue(archive_references) self.output_prediction.setValue(archive_predicion) self.output_info.setValue(stat_infosconcat) self.status.set('done', 100)
def execute(self): init_process_logger('log.txt') self.output_log.setValue('log.txt') from os.path import basename from flyingpigeon import sdm from flyingpigeon.utils import archive, archiveextract self.status.set('Start process', 0) try: logger.info('reading the arguments') resources = archiveextract( self.getInputValues(identifier='resources')) taxon_name = self.getInputValues(identifier='taxon_name')[0] bbox_obj = self.BBox.getValue() bbox = [ bbox_obj.coords[0][0], bbox_obj.coords[0][1], bbox_obj.coords[1][0], bbox_obj.coords[1][1] ] period = self.getInputValues(identifier='period') period = period[0] indices = self.getInputValues(identifier='input_indices') archive_format = self.archive_format.getValue() logger.debug("indices = %s for %s ", indices, taxon_name) logger.info("bbox={0}".format(bbox)) except Exception as e: logger.error('failed to read in the arguments %s ' % e) logger.info('indices %s ' % indices) try: self.status.set('Fetching GBIF Data', 10) gbifdic = sdm.get_gbif(taxon_name, bbox=bbox) except Exception as e: msg = 'failed to search gbif.' logger.exception(msg) raise Exception(msg) try: self.status.set('write csv file', 70) gbifcsv = sdm.gbifdic2csv(gbifdic) except Exception as e: msg = 'failed to write csv file.' logger.exception(msg) raise Exception(msg) try: self.status.set('plot map', 80) from flyingpigeon.visualisation import map_gbifoccurrences latlon = sdm.latlon_gbifdic(gbifdic) occurence_map = map_gbifoccurrences(latlon) except Exception as e: msg = 'failed to plot occurence map.' logger.exception(msg) raise Exception(msg) ################################# # calculate the climate indices ################################# # get the indices ncs_indices = None try: self.status.set( 'start calculation of climate indices for %s' % indices, 30) ncs_indices = sdm.get_indices(resources=resources, indices=indices) logger.info('indice calculation done') except: msg = 'failed to calculate indices' logger.exception(msg) raise Exception(msg) try: self.status.set('get domain', 30) domains = set() for resource in ncs_indices: # get_domain works only if metadata are set in a correct way domains = domains.union([basename(resource).split('_')[1]]) if len(domains) == 1: domain = list(domains)[0] logger.debug('Domain %s found in indices files' % domain) else: logger.error('Not a single domain in indices files %s' % domains) except Exception as e: logger.exception('failed to get domains %s' % e) try: self.status.set('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, domain=domain) logger.info('PA mask sucessfully generated') except Exception as e: logger.exception('failed to generate the PA mask: %s' % e) try: self.status.set('Ploting PA mask', 25) from flyingpigeon.visualisation import map_PAmask PAmask_png = map_PAmask(PAmask) except Exception as e: logger.exception('failed to plot the PA mask: %s' % e) try: # sort indices indices_dic = None indices_dic = sdm.sort_indices(ncs_indices) logger.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' logger.exception(msg) raise Exception(msg) ncs_references = [] species_files = [] stat_infos = [] for count, key in enumerate(indices_dic.keys()): try: staus_nr = 40 + count * 10 self.status.set('Start processing of %s' % key, staus_nr) ncs = indices_dic[key] logger.info('with %s files' % len(ncs)) try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) logger.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed to calculate the reference' logger.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_reference, PAmask) stat_infos.append(gam_info) self.status.set('GAM sucessfully trained', staus_nr + 5) except Exception as e: msg = 'failed to train GAM for %s : %s' % (key, e) logger.debug(msg) try: prediction = sdm.get_prediction(gam_model, ncs) self.status.set('prediction done', staus_nr + 7) except Exception as e: msg = 'failed to predict tree occurence %s' % e logger.exception(msg) # raise Exception(msg) try: self.status.set('land sea mask for predicted data', staus_nr + 8) from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid mask = invert(isnan(PAmask)) mask = broadcast_arrays(prediction, mask)[1] prediction[mask is False] = nan except Exception as e: logger.debug('failed to mask predicted data: %s' % e) try: species_files.append(sdm.write_to_file(ncs[0], prediction)) logger.info('Favourabillity written to file') except Exception as e: msg = 'failed to write species file %s' % e logger.debug(msg) # raise Exception(msg) except Exception as e: msg = 'failed to calculate reference indices. %s ' % e logger.exception(msg) raise Exception(msg) try: archive_indices = None archive_indices = archive(ncs_indices, format=archive_format) logger.info('indices added to archive') except: msg = 'failed adding indices to archive' logger.exception(msg) raise Exception(msg) archive_references = None try: archive_references = archive(ncs_references, format=archive_format) logger.info('indices reference added to archive') except: msg = 'failed adding reference indices to archive' logger.exception(msg) raise Exception(msg) archive_predicion = None try: archive_predicion = archive(species_files, format=archive_format) logger.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' logger.exception(msg) raise Exception(msg) try: from flyingpigeon.visualisation import pdfmerge stat_infosconcat = pdfmerge(stat_infos) logger.info('stat infos pdfs merged') except: logger.exception('failed to concat images') _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') self.output_csv.setValue(gbifcsv) self.output_gbif.setValue(occurence_map) self.output_PA.setValue(PAmask_png) self.output_indices.setValue(archive_indices) self.output_reference.setValue(archive_references) self.output_prediction.setValue(archive_predicion) self.output_info.setValue(stat_infosconcat) self.status.set('done', 100)
def execute(self): from os.path import basename from flyingpigeon import sdm from flyingpigeon.utils import archive self.status.set('Start process', 0) try: logger.info('reading the arguments') resources = self.getInputValues(identifier='resources') taxon_name = self.getInputValues(identifier='taxon_name')[0] #period = self.period.getValue() period = self.getInputValues(identifier='period') period = period[0] #indices = self.input_indices.getValue() indices = self.getInputValues(identifier='input_indices') logger.debug("indices = %s for %s ", indices, taxon_name) archive_format = self.archive_format.getValue() except Exception as e: logger.error('failed to read in the arguments %s ' % e) logger.info('indices %s ' % indices) try: self.status.set('Fetching GBIF Data', 10) latlon = sdm.gbif_serach(taxon_name) except Exception as e: logger.exception('failed to search gbif %s' % e) #try: #self.status.set('extract csv file with tree observations', 5) #csv_file = sdm.get_csv(taxon_name[0]) #except Exception as e: #logger.exception('failed to extract csv file from url.') #try: #self.status.set('read in latlon coordinates of tree observations', 10) #latlon = sdm.get_latlon(csv_file) #except Exception as e: #logger.exception('failed to extract the latlon points') try: from flyingpigeon.visualisation import map_gbifoccurrences self.status.set('plotting Tree presents based on coordinates', 15) tree_presents = map_gbifoccurrences(latlon) except Exception as e: msg = 'plotting points failed' logger.exception(msg) with open(tree_presents, 'w') as fp: # TODO: needs to be a png file fp.write(msg) try: self.status.set('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon) logger.info('PA mask sucessfully generated') except Exception as e: logger.exception('failed to generate the PA mask') png_PA_mask = 'PA_mask.png' try: import matplotlib.pyplot as plt self.status.set('Ploting PA mask', 25) fig = plt.figure(figsize=(20,10), dpi=300, facecolor='w', edgecolor='k') cs = plt.contourf(PAmask) fig.savefig(png_PA_mask) plt.close() except Exception as e: msg = 'failed to plot the PA mask' logger.exception(msg) with open(png_PA_mask, 'w') as fp: # TODO: needs to be a png file fp.write(msg) ################################# ### calculate the climate indices ################################# # get the indices ncs_indices = None try: self.status.set('start calculation of climate indices for %s' % indices, 30 ) ncs_indices = sdm.get_indices(resources=resources, indices=indices) logger.info('indice calculation done') except: msg = 'failed to calculate indices' logger.exception(msg) raise Exception(msg) try: archive_indices = archive(ncs_indices , format=archive_format) logger.info('indices 3D added to tarfile') except: msg = 'failed adding indices to tar' logger.exception(msg) raise Exception(msg) indices_dic = None try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) logger.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' logger.exception(msg) raise Exception(msg) # try: # # open tar files # tar_reference = tarfile.open('reference.tar', "w") # tar_indices = tarfile.open('indices.tar', "w") # tar_info = tarfile.open('info.tar', "w") # tar_prediction = tarfile.open('prediction.tar', "w") # logger.info('tar files prepared') # except: # msg = 'tar file preparation failed' # logger.exception(msg) # raise Exception(msg) ncs_references = [] species_files = [] statistics_info = [] for count,key in enumerate(indices_dic.keys()): try: self.status.set('Start processing of %s ' % key, 40 + count * 10) ncs = indices_dic[key] logger.info('with %s files' % len(ncs)) try: ncs_references.extend(sdm.get_reference(ncs_indices=ncs, period=period)) logger.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed adding ref indices to tar' logger.exception(msg) raise Exception(msg) # for nc_reference in ncs_references: # tar_reference.add(nc_reference, # arcname = basename(nc_reference))# nc_reference.replace(os.path.abspath(os.path.curdir), "")) # logger.info('reference indices added to tarfile') except: msg = 'failed to calculate reference indices.' logger.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam(ncs_references,PAmask) statistics_info.append(gam_info) self.status.set('GAM sucessfully trained', 70) except: msg = 'failed to train GAM' logger.exception(msg) raise Exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs_indices) self.status.set('prediction done', 80) except: msg = 'failed to predict' logger.exception(msg) raise Exception(msg) try: from numpy import invert, isnan, nan, broadcast_arrays, array, zeros, linspace, meshgrid mask = invert(isnan(PAmask)) mask = broadcast_arrays(prediction, mask)[1] prediction[mask==False] = nan self.status.set('land sea mask for predicted data', 90) except: logger.exception('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs_indices[0], prediction)) logger.info('Favourabillity written to file') #tar_prediction.add(species_file, # arcname = basename(species_file))#.replace(os.path.abspath(os.path.curdir), "")) except: msg = 'failed to write species file' logger.exception(msg) raise Exception(msg) from flyingpigeon.visualisation import concat_images statistics_infos = None try: statistics_infos = concat_images(statistics_info, orientation='v') except: msg = 'failed to concat images' logger.exception(msg) raise Exception(msg) archive_references = None try: archive_references = archive(ncs_references , format=archive_format) logger.info('indices 2D added to archive') except: msg = 'failed adding 2D indices to archive' logger.exception(msg) raise Exception(msg) archive_predicion = None try: archive_predicion = archive(species_files , format=archive_format) logger.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' logger.exception(msg) raise Exception(msg) # try: # #tar_indices.close() # #tar_reference.close() # tar_prediction.close() # #tar_info.close() # logger.info('tar files closed') # except: # logger.exception('tar file closing failed') # raise Exception #self.output_csv.setValue( csv_file ) self.output_gbif.setValue( tree_presents ) self.output_PA.setValue( png_PA_mask ) self.output_indices.setValue( archive_indices ) self.output_reference.setValue (archive_references) self.output_prediction.setValue (archive_predicion) self.output_info.setValue(statistics_infos) self.status.set('done', 100)
ncs_references = ['/home/nils/data/sdm/RX1day_EUR-11_MPI-M-MPI-ESM-LR_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-1998-2000.nc','/home/nils/data/sdm/TG_EUR-11_MPI-M-MPI-ESM-LR_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-1998-2000.nc','/home/nils/data/sdm/TNn_EUR-11_MPI-M-MPI-ESM-LR_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_Jan_ref-1998-2000.nc'] ncs_references = ['/home/nils/.conda/envs/birdhouse/etc/pywps/TNn_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_Jan_ref-all.nc', '/home/nils/.conda/envs/birdhouse/etc/pywps/TG_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-all.nc', '/home/nils/.conda/envs/birdhouse/etc/pywps/PRCPTOT_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-all.nc'] ncs_indices = ['/home/nils/data/sdm/TG_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_ICHEC-EC-EARTH_historical_r12i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_ICHEC-EC-EARTH_historical_r1i1p1_KNMI-RACMO22E_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_MOHC-HadGEM2-ES_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_MOHC-HadGEM2-ES_historical_r1i1p1_KNMI-RACMO22E_v1_JJA_20010101-20050101.nc'] csv = '/home/nils/Downloads/0013848-160118175350007.csv' latlon = sdm.get_latlon(csv) PApoints = sdm.get_PAmask(coordinates=latlon) gam_model, predict_ref, gam_info = sdm.get_gam(ncs_references,PApoints) print gam_model.names import matplotlib.pyplot as plt for i in range(len(gam_model)): try: plt.plot(gam_model[i]) plt.show() except: print 'failed for' , i prediction = sdm.get_prediction(gam_model, ncs_indices)
def _handler(self, request, response): init_process_logger('log.txt') response.outputs['output_log'].file = 'log.txt' response.update_status('Start process', 0) try: LOGGER.info('reading the arguments') resources = archiveextract( resource=rename_complexinputs(request.inputs['resource'])) taxon_name = request.inputs['taxon_name'][0].data bbox = [-180, -90, 180, 90] # bbox_obj = self.BBox.getValue() # bbox = [bbox_obj.coords[0][0], # bbox_obj.coords[0][1], # bbox_obj.coords[1][0], # bbox_obj.coords[1][1]] period = request.inputs['period'] period = period[0].data indices = [inpt.data for inpt in request.inputs['indices']] archive_format = request.inputs['archive_format'][0].data LOGGER.exception("indices = %s for %s ", indices, taxon_name) LOGGER.info("bbox={0}".format(bbox)) except: LOGGER.exception('failed to read in the arguments') LOGGER.info('indices %s ' % indices) try: response.update_status('Fetching GBIF Data', 10) gbifdic = sdm.get_gbif(taxon_name, bbox=bbox) LOGGER.info('Fetched GBIF data') except: msg = 'failed to search gbif.' LOGGER.exception(msg) raise Exception(msg) try: response.update_status('write csv file', 70) gbifcsv = sdm.gbifdic2csv(gbifdic) LOGGER.info('GBIF data written to file') except: msg = 'failed to write csv file.' LOGGER.exception(msg) raise Exception(msg) try: response.update_status('plot map', 80) latlon = sdm.latlon_gbifdic(gbifdic) occurence_map = map_gbifoccurrences(latlon) except: msg = 'failed to plot occurence map.' LOGGER.exception(msg) raise Exception(msg) ################################# # calculate the climate indices ################################# # get the indices ncs_indices = None try: response.update_status( 'start calculation of climate indices for %s' % indices, 30) ncs_indices = sdm.get_indices(resource=resources, indices=indices) LOGGER.info('indice calculation done') except: msg = 'failed to calculate indices' LOGGER.exception(msg) raise Exception(msg) try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) LOGGER.info('indice files sorted in dictionary') except: msg = 'failed to sort indices' LOGGER.exception(msg) indices_dic = {'dummy': []} ncs_references = [] species_files = [] stat_infos = [] PAmask_pngs = [] response.update_status('Start processing for %s Datasets' % len(indices_dic.keys())) for count, key in enumerate(indices_dic.keys()): try: staus_nr = 40 + count * 10 response.update_status('Start processing of %s' % key, staus_nr) ncs = indices_dic[key] LOGGER.info('with %s files' % len(ncs)) try: response.update_status('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0]) LOGGER.info('PA mask sucessfully generated') except: LOGGER.exception('failed to generate the PA mask') try: response.update_status('Ploting PA mask', 25) PAmask_pngs.extend([map_PAmask(PAmask)]) except: LOGGER.exception('failed to plot the PA mask') try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) LOGGER.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed to calculate the reference' LOGGER.exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_reference, PAmask) stat_infos.append(gam_info) response.update_status('GAM sucessfully trained', staus_nr + 5) except: msg = 'failed to train GAM for %s' % (key) LOGGER.exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs) response.update_status('prediction done', staus_nr + 7) except: msg = 'failed to predict tree occurence' LOGGER.exception(msg) # raise Exception(msg) # try: # response.update_status('land sea mask for predicted data', staus_nr + 8) # from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid # mask = invert(isnan(PAmask)) # mask = broadcast_arrays(prediction, mask)[1] # prediction[mask is False] = nan # except: # LOGGER.exception('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs[0], prediction)) LOGGER.info('Favourabillity written to file') except: msg = 'failed to write species file' LOGGER.exception(msg) # raise Exception(msg) except: msg = 'failed to calculate reference indices' LOGGER.exception(msg) raise Exception(msg) try: archive_indices = archive(ncs_indices, format=archive_format) LOGGER.info('indices added to archive') except: msg = 'failed adding indices to archive' LOGGER.exception(msg) archive_indices = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_references = archive(ncs_references, format=archive_format) LOGGER.info('indices reference added to archive') except: msg = 'failed adding reference indices to archive' LOGGER.exception(msg) archive_references = tempfile.mkstemp(suffix='.tar', prefix='foobar-', dir='.') try: archive_prediction = archive(species_files, format=archive_format) LOGGER.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' LOGGER.exception(msg) raise Exception(msg) try: stat_infosconcat = pdfmerge(stat_infos) LOGGER.debug('pngs %s' % PAmask_pngs) PAmask_png = concat_images(PAmask_pngs, orientation='h') LOGGER.info('stat infos pdfs and mask pngs merged') except: LOGGER.exception('failed to concat images') _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') _, PAmask_png = tempfile.mkstemp(suffix='.png', prefix='foobar-', dir='.') response.outputs['output_gbif'].file = occurence_map response.outputs['output_PA'].file = PAmask_png response.outputs['output_indices'].file = archive_indices response.outputs['output_reference'].file = archive_references response.outputs['output_prediction'].file = archive_prediction response.outputs['output_info'].file = stat_infosconcat response.outputs['output_csv'].file = gbifcsv response.update_status('done', 100) return response
def execute(self): from os.path import basename from flyingpigeon import sdm from flyingpigeon.utils import archive self.status.set('Start process', 0) try: logger.info('reading the arguments') resources = self.getInputValues(identifier='resources') gbif = self.getInputValues(identifier='gbif') #period = self.period.getValue() period = self.getInputValues(identifier='period') period = period[0] #indices = self.input_indices.getValue() indices = self.getInputValues(identifier='input_indices') logger.debug("indices = %s", indices) archive_format = self.archive_format.getValue() except Exception as e: logger.error('failed to read in the arguments %s ' % e) logger.info('indices %s ' % indices) try: self.status.set('extract csv file with tree observations', 5) csv_file = sdm.get_csv(gbif[0]) except Exception as e: logger.exception('failed to extract csv file from url.') try: self.status.set('read in latlon coordinates of tree observations', 10) latlon = sdm.get_latlon(csv_file) except Exception as e: logger.exception('failed to extract the latlon points') tree_presents = 'tree_presents.png' try: self.status.set('plotting Tree presents based on coordinates', 15) import matplotlib.pyplot as plt from cartopy import config from cartopy.util import add_cyclic_point import cartopy.crs as ccrs fig = plt.figure(figsize=(20, 10), dpi=600, facecolor='w', edgecolor='k') ax = plt.axes(projection=ccrs.Robinson(central_longitude=0)) ax.coastlines() ax.set_global() cs = plt.scatter(latlon[:, 1], latlon[:, 0], transform=ccrs.PlateCarree()) fig.savefig(tree_presents) plt.close() except Exception as e: msg = 'plotting points failed' logger.exception(msg) with open(tree_presents, 'w') as fp: # TODO: needs to be a png file fp.write(msg) try: self.status.set('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon) logger.info('PA mask sucessfully generated') except Exception as e: logger.exception('failed to generate the PA mask') png_PA_mask = 'PA_mask.png' try: self.status.set('Ploting PA mask', 25) fig = plt.figure(figsize=(20, 10), dpi=300, facecolor='w', edgecolor='k') cs = plt.contourf(PAmask) fig.savefig(png_PA_mask) plt.close() except Exception as e: msg = 'failed to plot the PA mask' logger.exception(msg) with open(png_PA_mask, 'w') as fp: # TODO: needs to be a png file fp.write(msg) ################################# ### calculate the climate indices ################################# # get the indices ncs_indices = None try: self.status.set( 'start calculation of climate indices for %s' % indices, 30) ncs_indices = sdm.get_indices(resources=resources, indices=indices) logger.info('indice calculation done') except: msg = 'failed to calculate indices' logger.exception(msg) raise Exception(msg) try: archive_indices = archive(ncs_indices, format=archive_format) logger.info('indices 3D added to tarfile') except: msg = 'failed adding indices to tar' logger.exception(msg) raise Exception(msg) indices_dic = None try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) logger.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' logger.exception(msg) raise Exception(msg) # try: # # open tar files # tar_reference = tarfile.open('reference.tar', "w") # tar_indices = tarfile.open('indices.tar', "w") # tar_info = tarfile.open('info.tar', "w") # tar_prediction = tarfile.open('prediction.tar', "w") # logger.info('tar files prepared') # except: # msg = 'tar file preparation failed' # logger.exception(msg) # raise Exception(msg) ncs_references = [] species_files = [] statistics_info = [] for count, key in enumerate(indices_dic.keys()): try: self.status.set('Start processing of %s ' % key, 40 + count * 10) ncs = indices_dic[key] logger.info('with %s files' % len(ncs)) try: ncs_references.extend( sdm.get_reference(ncs_indices=ncs, period=period)) logger.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed adding ref indices to tar' logger.exception(msg) raise Exception(msg) # for nc_reference in ncs_references: # tar_reference.add(nc_reference, # arcname = basename(nc_reference))# nc_reference.replace(os.path.abspath(os.path.curdir), "")) # logger.info('reference indices added to tarfile') except: msg = 'failed to calculate reference indices.' logger.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_references, PAmask) statistics_info.append(gam_info) self.status.set('GAM sucessfully trained', 70) except: msg = 'failed to train GAM' logger.exception(msg) raise Exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs_indices) self.status.set('prediction done', 80) except: msg = 'failed to predict' logger.exception(msg) raise Exception(msg) try: from numpy import invert, isnan, nan, broadcast_arrays, array, zeros, linspace, meshgrid mask = invert(isnan(PAmask)) mask = broadcast_arrays(prediction, mask)[1] prediction[mask == False] = nan self.status.set('land sea mask for predicted data', 90) except: logger.exception('failed to mask predicted data') try: species_files.append( sdm.write_to_file(ncs_indices[0], prediction)) logger.info('Favourabillity written to file') #tar_prediction.add(species_file, # arcname = basename(species_file))#.replace(os.path.abspath(os.path.curdir), "")) except: msg = 'failed to write species file' logger.exception(msg) raise Exception(msg) from flyingpigeon.visualisation import concat_images statistics_infos = None try: statistics_infos = concat_images(statistics_info, orientation='v') except: msg = 'failed to concat images' logger.exception(msg) raise Exception(msg) archive_references = None try: archive_references = archive(ncs_references, format=archive_format) logger.info('indices 2D added to archive') except: msg = 'failed adding 2D indices to archive' logger.exception(msg) raise Exception(msg) archive_predicion = None try: archive_predicion = archive(species_files, format=archive_format) logger.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' logger.exception(msg) raise Exception(msg) # try: # #tar_indices.close() # #tar_reference.close() # tar_prediction.close() # #tar_info.close() # logger.info('tar files closed') # except: # logger.exception('tar file closing failed') # raise Exception self.output_csv.setValue(csv_file) self.output_gbif.setValue(tree_presents) self.output_PA.setValue(png_PA_mask) self.output_indices.setValue(archive_indices) self.output_reference.setValue(archive_references) self.output_prediction.setValue(archive_predicion) self.output_info.setValue(statistics_infos) self.status.set('done', 100)
return prediction tic = dt.now() indices = '/home/nils/data/sdm/tmpTzDdv7.tar' gbif = '/home/nils/data/sdm/acacia_albida.csv' gbif_url = 'https://bovec.dkrz.de/download/wpsoutputs/flyingpigeon/392f1c34-b4d1-11e7-a589-109836a7cf3a/tmp95yvix.csv' latlon = sdm.latlon_gbifcsv(gbif) latlon occurence_map = map_gbifoccurrences(latlon) occurence_map ncs = archiveextract(indices) ncs indices_dic = sdm.sort_indices(ncs) indices_dic PAmask = sdm.get_PAmask(coordinates=latlon, nc=ncs[0]) PAmask # PAmask_pngs.extend([map_PAmask(PAmask)]) map_PAmask(PAmask) ncs_reference = sdm.get_reference(ncs_indices=ncs) ncs_reference gam_model, predict_gam, gam_info = sdm.get_gam(ncs_reference, PAmask, modelname='TG_AFR-44_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1') prediction = get_prediction(gam_model, ncs)
def execute(self): from flyingpigeon import sdm self.status.set('Start process', 0) try: logger.info('read in the arguments') resources = self.getInputValues(identifier='resources') gbif = self.getInputValues(identifier='gbif') period = self.getInputValues(identifier='period') period = period[0] indices = self.getInputValues(identifier='indices') if 'all' in indices: indices = ['TG_JJA', 'TNn_Jan'] # 'PRCPTOT_JJA' except Exception as e: logger.error('failed to read in the arguments %s ' % e) logger.info('indices %s ' % indices) try: self.status.set('extract csv file with tree observations', 5) csv_file = sdm.get_csv(gbif[0]) except Exception as e: logger.exception('failed to extract csv file from url.') try: self.status.set('read in latlon coordinates of tree observations', 10) latlon = sdm.get_latlon(csv_file) except Exception as e: logger.exception('failed to extract the latlon points') tree_presents = 'tree_presents.png' try: self.status.set('plotting Tree presents based on coordinates', 15) import matplotlib.pyplot as plt from cartopy import config from cartopy.util import add_cyclic_point import cartopy.crs as ccrs fig = plt.figure(figsize=(20,10), dpi=600, facecolor='w', edgecolor='k') ax = plt.axes(projection=ccrs.Robinson(central_longitude=0)) ax.coastlines() ax.set_global() cs = plt.scatter(latlon[:,1], latlon[:,0], transform=ccrs.PlateCarree()) fig.savefig(tree_presents) plt.close() except Exception as e: msg = 'plotting points failed' logger.exception(msg) with open(tree_presents, 'w') as fp: # TODO: needs to be a png file fp.write(msg) try: self.status.set('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon) logger.info('PA mask sucessfully generated') except Exception as e: logger.exception('failed to generate the PA mask') png_PA_mask = 'PA_mask.png' try: self.status.set('Ploting PA mask', 25) fig = plt.figure(figsize=(20,10), dpi=300, facecolor='w', edgecolor='k') cs = plt.contourf(PAmask) fig.savefig(png_PA_mask) plt.close() except Exception as e: msg = 'failed to plot the PA mask' logger.exception(msg) with open(png_PA_mask, 'w') as fp: # TODO: needs to be a png file fp.write(msg) ################################# ### calculate the climate inidces ################################# # get the indices ncs_indices = None try: self.status.set('start calculation of climate indices for %s' % indices, 30 ) ncs_indices = sdm.get_indices(resources=resources, indices=indices) logger.info('indice calculation done') except: msg = 'failed to calculate indices' logger.exception(msg) raise Exception(msg) indices_dic = None try: # sort indices indices_dic = sdm.sort_indices(ncs_indices) logger.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' logger.exception(msg) raise Exception(msg) try: # open tar files tar_reference = tarfile.open('reference.tar', "w") tar_indices = tarfile.open('indices.tar', "w") tar_info = tarfile.open('info.tar', "w") tar_prediction = tarfile.open('prediction.tar', "w") logger.info('tar files prepared') except: msg = 'tar file preparation failed' logger.exception(msg) raise Exception(msg) for count,key in enumerate(indices_dic.keys()): try: self.status.set('Start processing of %s ' % key, 40 + count * 10) ncs = indices_dic[key] logger.info('with %s files' % len(ncs)) try: for nc in ncs: tar_indices.add(nc, arcname = basename(nc) )# .replace(os.path.abspath(os.path.curdir), "")) logger.info('indices added to tarfile for %s' % key) except: msg = 'failed adding indices to tar' logger.exception(msg) raise Exception(msg) try: ncs_references = sdm.get_reference(ncs_indices=ncs, period=period) logger.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed adding ref indices to tar' logger.exception(msg) raise Exception(msg) for nc_reference in ncs_references: tar_reference.add(nc_reference, arcname = basename(nc_reference))# nc_reference.replace(os.path.abspath(os.path.curdir), "")) logger.info('reference indices added to tarfile') except: msg = 'failed to calculate reference indices.' logger.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam(ncs_references,PAmask) tar_info.add(gam_info, arcname = "%s.pdf" % key) self.status.set('GAM sucessfully trained', 70) except: msg = 'failed to train GAM' logger.exception(msg) raise Exception(msg) try: prediction = sdm.get_prediction(gam_model, ncs_indices) self.status.set('prediction done', 80) except: msg = 'failed to predict' logger.exception(msg) raise Exception(msg) try: from numpy import invert, isnan, nan, broadcast_arrays, array, zeros, linspace, meshgrid mask = invert(isnan(PApoints)) mask = broadcast_arrays(prediction, mask)[1] prediction[mask==False] = nan self.status.set('land sea mask for predicted data', 90) except: logger.exception('failed to mask predicted data') try: species_file = sdm.write_to_file(ncs_indices[0], prediction) logger.info('Favourabillity written to file') tar_prediction.add(species_file, arcname = basename(species_file))#.replace(os.path.abspath(os.path.curdir), "")) except: msg = 'failed to write species file' logger.exception(msg) raise Exception(msg) try: tar_indices.close() tar_reference.close() tar_prediction.close() tar_info.close() logger.info('tar files closed') except: logger.exception('tar file closing failed') raise Exception self.output_csv.setValue( csv_file ) self.output_gbif.setValue( tree_presents ) self.output_PA.setValue( png_PA_mask ) self.output_indices.setValue( 'indices.tar' ) self.output_reference.setValue ('reference.tar') self.output_prediction.setValue ('prediction.tar') self.output_info.setValue('info.tar') self.status.set('done', 100)
'/home/nils/.conda/envs/birdhouse/etc/pywps/TG_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-all.nc', '/home/nils/.conda/envs/birdhouse/etc/pywps/PRCPTOT_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_ref-all.nc' ] ncs_indices = [ '/home/nils/data/sdm/TG_EUR-11_CNRM-CERFACS-CNRM-CM5_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_ICHEC-EC-EARTH_historical_r12i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_ICHEC-EC-EARTH_historical_r1i1p1_KNMI-RACMO22E_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_MOHC-HadGEM2-ES_historical_r1i1p1_CLMcom-CCLM4-8-17_v1_JJA_20010101-20050101.nc', '/home/nils/data/sdm/TG_EUR-11_MOHC-HadGEM2-ES_historical_r1i1p1_KNMI-RACMO22E_v1_JJA_20010101-20050101.nc' ] csv = '/home/nils/Downloads/0013848-160118175350007.csv' latlon = sdm.get_latlon(csv) PApoints = sdm.get_PAmask(coordinates=latlon) gam_model, predict_ref, gam_info = sdm.get_gam(ncs_references, PApoints) print gam_model.names import matplotlib.pyplot as plt for i in range(len(gam_model)): try: plt.plot(gam_model[i]) plt.show() except: print 'failed for', i prediction = sdm.get_prediction(gam_model, ncs_indices)
def _handler(self, request, response): init_process_logger('log.txt') response.outputs['output_log'].file = 'log.txt' from os.path import basename from flyingpigeon import sdm from flyingpigeon.utils import archive, archiveextract, download response.update_status('Start process', 0) try: LOGGER.info('reading the arguments') resources_raw = archiveextract( resource=rename_complexinputs(request.inputs['resources'])) csv_url = request.inputs['gbif'][0].data period = request.inputs['period'] period = period[0].data indices = request.inputs['input_indices'] archive_format = request.inputs['archive_format'] LOGGER.info('indices %s ' % indices) LOGGER.debug('csv_url %s' % csv_url) except Exception: LOGGER.exception('failed to read in the arguments') raise try: LOGGER.info('set up the environment') csv_file = download(csv_url) resources = archiveextract(resources_raw) except: LOGGER.exception('failed to set up the environment') raise try: response.update_status('read in latlon coordinates', 10) latlon = sdm.latlon_gbifcsv(csv_file) LOGGER.info('got occurence coordinates %s ' % csv_file) except: LOGGER.exception( 'failed to extract the latlon points from file: %s' % (csv_file)) try: response.update_status('plot map', 20) from flyingpigeon.visualisation import map_gbifoccurrences # latlon = sdm.latlon_gbifdic(gbifdic) occurence_map = map_gbifoccurrences(latlon) except: LOGGER.exception('failed to plot occurence map') ################################# # calculate the climate indices ################################# # get the indices ncs_indices = None try: response.update_status( 'start calculation of climate indices for %s' % indices, 30) ncs_indices = sdm.get_indices(resources=resources, indices=indices) LOGGER.info('indice calculation done') except: msg = 'failed to calculate indices' LOGGER.exception(msg) raise Exception(msg) try: response.update_status('get domain', 30) domains = set() for resource in ncs_indices: # get_domain works only if metadata are set in a correct way domains = domains.union([basename(resource).split('_')[1]]) if len(domains) == 1: domain = list(domains)[0] LOGGER.debug('Domain %s found in indices files' % domain) else: LOGGER.error('Not a single domain in indices files %s' % domains) except: LOGGER.exception('failed to get domains') try: response.update_status('generating the PA mask', 20) PAmask = sdm.get_PAmask(coordinates=latlon, domain=domain) LOGGER.info('PA mask sucessfully generated') except: LOGGER.exception('failed to generate the PA mask') try: response.update_status('Ploting PA mask', 25) from flyingpigeon.visualisation import map_PAmask PAmask_png = map_PAmask(PAmask) except: LOGGER.exception('failed to plot the PA mask') try: # sort indices indices_dic = None indices_dic = sdm.sort_indices(ncs_indices) LOGGER.info('indice files sorted for %s Datasets' % len(indices_dic.keys())) except: msg = 'failed to sort indices' LOGGER.exception(msg) raise Exception(msg) ncs_references = [] species_files = [] stat_infos = [] for count, key in enumerate(indices_dic.keys()): try: staus_nr = 40 + count * 10 response.update_status('Start processing of %s' % key, staus_nr) ncs = indices_dic[key] LOGGER.info('with %s files' % len(ncs)) try: ncs_reference = sdm.get_reference(ncs_indices=ncs, period=period) ncs_references.extend(ncs_reference) LOGGER.info('reference indice calculated %s ' % ncs_references) except: msg = 'failed to calculate the reference' LOGGER.exception(msg) raise Exception(msg) try: gam_model, predict_gam, gam_info = sdm.get_gam( ncs_reference, PAmask) stat_infos.append(gam_info) response.update_status('GAM sucessfully trained', staus_nr + 5) except: msg = 'failed to train GAM for %s' % (key) LOGGER.debug(msg) try: prediction = sdm.get_prediction(gam_model, ncs) response.update_status('prediction done', staus_nr + 7) except: msg = 'failed to predict tree occurence' LOGGER.exception(msg) # raise Exception(msg) try: response.update_status('land sea mask for predicted data', staus_nr + 8) from numpy import invert, isnan, nan, broadcast_arrays # , array, zeros, linspace, meshgrid mask = invert(isnan(PAmask)) mask = broadcast_arrays(prediction, mask)[1] prediction[mask is False] = nan except: LOGGER.debug('failed to mask predicted data') try: species_files.append(sdm.write_to_file(ncs[0], prediction)) LOGGER.info('Favourabillity written to file') except: msg = 'failed to write species file' LOGGER.debug(msg) # raise Exception(msg) except: msg = 'failed to calculate reference indices.' LOGGER.exception(msg) raise Exception(msg) try: archive_indices = None archive_indices = archive(ncs_indices, format=archive_format) LOGGER.info('indices added to archive') except: msg = 'failed adding indices to archive' LOGGER.exception(msg) raise Exception(msg) archive_references = None try: archive_references = archive(ncs_references, format=archive_format) LOGGER.info('indices reference added to archive') except: msg = 'failed adding reference indices to archive' LOGGER.exception(msg) raise Exception(msg) archive_predicion = None try: archive_predicion = archive(species_files, format=archive_format) LOGGER.info('species_files added to archive') except: msg = 'failed adding species_files indices to archive' LOGGER.exception(msg) raise Exception(msg) try: from flyingpigeon.visualisation import pdfmerge stat_infosconcat = pdfmerge(stat_infos) LOGGER.info('stat infos pdfs merged') except: LOGGER.exception('failed to concat images') _, stat_infosconcat = tempfile.mkstemp(suffix='.pdf', prefix='foobar-', dir='.') # self.output_csv.setValue(csv_file) response.outputs['output_gbif'].file = occurence_map response.outputs['output_PA'].file = PAmask_png response.outputs['output_indices'].file = archive_indices response.outputs['output_reference'].file = archive_references response.outputs['archive_predicion'].file = archive_predicion response.outputs['output_info'].file = stat_infosconcat response.update_status('done', 100) return response