def run_subject(sub, maskname="graymatter-bin_mask",
                settings=projectSettings,
                options=analysisSettings, logger=None):

    mask = pu.load_img(paths["root"], "derivatives", sub,
                       "masks", "{}.nii.gz".format(maskname))

    fmri_data, labels, bg_image = load_betas(settings, sub,
                                             t="cope-LSS", center=True,
                                             scale=False, logger=logger)
    selector = labels[labels.AB == 1].sort_values(["SubRel", "TrialTag"])

    fmri_data = pu.index_img(fmri_data, selector.index)

    options["searchlight"]["rdm_metric"] = "correlation"

    results = pa.searchlight_rsa(
        fmri_data,
        model_rdms[(model_rdms.type == "full")].dropna(axis=1).values[:, 2:],
        m=mask,
        write=False,
        logger=logger,
        **options["searchlight"])

    pu.data_to_img(results.scores_, bg_image).to_filename(
        os.path.join(paths["root"], "analysis", sub,
                     "multivariate", "rsa",
                     "{}_{}_AB_corr_rsaSearchlight.nii.gz".format(sub,
                                                                  maskname)))
    return results
Example #2
0
def run_subject(sub,
                modelname,
                maskname="grayMatter-bin_mask",
                settings=projectSettings,
                options=analysisSettings,
                logger=None):

    # fmri_data, labels, bg_image, mask = load_data_lss(sub, maskname,
    #                                                   t=contrastSettings[modelname]["t"],
    #                                                   normalize=False, logger=logger)

    fmri_data, labels, bg_image = load_betas(settings,
                                             sub,
                                             t=options["t"],
                                             logger=logger)

    mask = pu.load_img(os.path.join(
        paths['root'], 'derivatives', sub, 'masks',
        settings["templates"]["masks"].format(maskname)),
                       logger=logger)

    fmri_data = pu.mask_img(fmri_data, mask, logger=logger)

    conditionSelector = np.where(
        labels[contrastSettings[modelname]["label"]] != "None")

    op = StandardScaler()
    scaledData = pa.op_by_label(fmri_data, labels['chunks'], op, logger=logger)

    # analysis
    # output order: CD2AB, AB2CD
    cv = LeaveOneGroupOut()
    fmri_data = pu.unmask_img(scaledData[conditionSelector],
                              mask,
                              logger=logger)
    result = pa.searchlight(
        fmri_data,
        labels.iloc[conditionSelector][contrastSettings[modelname]["label"]],
        m=mask,
        cv=cv,
        groups=labels.iloc[conditionSelector][contrastSettings[modelname]
                                              ["grouping"]],
        logger=logger,
        **options['searchlight'])

    outpath = os.path.join(paths["root"], "analysis", sub, "multivariate",
                           "searchlight",
                           "{}-{}-cvsl.nii.gz".format(sub, modelname))
    pu.data_to_img(result.scores_, bg_image,
                   logger=logger).to_filename(outpath)
    return result
Example #3
0
def run_subject(sub,
                maskname="graymatter-bin_mask",
                settings=projectSettings,
                options=analysisSettings,
                logger=None):
    mask = pu.load_img(paths["root"],
                       "derivatives",
                       sub,
                       "masks",
                       "{}.nii.gz".format(maskname),
                       logger=logger)

    fmri_data, labels, bg_image = load_betas(settings,
                                             sub,
                                             t="cope-LSS",
                                             logger=logger)

    selector = labels[(labels.CD == 1) & (labels.Match == "1")]

    fmri_data = pu.index_img(fmri_data, selector.index)

    options["searchlight"]["estimator"] = Pipeline(steps=[  # (
        # "variance_threshold",
        # VarianceThreshold()),
        ("scaling", StandardScaler()),
        #            ("feature_select", SelectPercentile(f_classif, percentile=20)),
        #            ("feature_select", SelectKBest(f_classif, k=100)),
        ("svm", LinearSVC(C=0.05))
        #            ("plr", LogisticRegression(C=0.05, penalty="l1", tol=0.01))
    ])

    # analysis
    # output order: CD2AB, AB2CD
    cv = LeaveOneGroupOut()

    result = pa.searchlight(fmri_data,
                            selector.CDMainRel,
                            m=mask,
                            cv=cv,
                            groups=selector['chunks'],
                            write=False,
                            logger=logger,
                            **options['searchlight'])

    outpath = os.path.join(paths["root"], "analysis", sub, "multivariate",
                           "searchlight", "lss",
                           "{}_CDMatch-MainRel-cvsl.nii.gz".format(sub))
    pu.data_to_img(result.scores_, bg_image,
                   logger=logger).to_filename(outpath)
    return result
Example #4
0
 def __init__(self, sub, mask_file=None, settings=analysisSettings["searchlight"], phase="AB", logger=None, phase_equals=True, phase_val=1, permutations=0):
     self.logger = logger
     self.sub = sub
     self.phase = phase
     self.target = "{}MainRel".format(phase.upper())
     self.mask = pu.load_img(mask_file, logger=logger) if mask_file else None
     self.fmri_data, self.labels, self.bg_image = load_betas(projectSettings, sub, t="cope-LSS", center=True, scale=False, logger=logger)
     self.select_data(phase, phase_equals, phase_val)
     self.init_sl(settings)
     self.permutations = permutations
     if self.permutations > 0:
         self.outpath = os.path.join(paths["root"], "analysis", sub, "multivariate", "searchlight", "permutation", "{}_{}-cvsl.nii.gz".format(sub, phase))
     else:
         self.outpath = os.path.join(paths["root"], "analysis", sub, "multivariate", "searchlight", "{}_{}-cvsl.nii.gz".format(sub, phase))
Example #5
0
def main(_):
    maskname = "graymatter-bin_mask"
    if FLAGS.debug:
        return
    # for sub in ["sub-01", "sub-02"]:

    if FLAGS.subject:
        subjects = [FLAGS.subject]
    else:
        subjects = projectSettings["subjects"]

    for sub in subjects:
        logging.info("Starting subject {}".format(sub))
        mask = pu.load_img(paths["root"], "derivatives", sub, "masks",
                           "{}.nii.gz".format(maskname))
        fmri_data, labels, _ = load_betas(projectSettings,
                                          sub,
                                          t="cope-LSS",
                                          center=True,
                                          scale=False)

        # TODO : add logic here to define models too
        if FLAGS.phase == "AB":
            selector = labels.AB == 1
            tag_key = "ABTag"
        elif FLAGS.phase == "CD":
            selector = labels.CD == 1
            tag_key = "CDTag"
        elif FLAGS.phase == "CDMatch":
            selector = (labels.CD == 1) & (labels.Match == "1")
            tag_key = "CDTag"
        elif FLAGS.phase == "CDNoMatch":
            selector = (labels.CD == 1) & (labels.Match == "0")
            tag_key = "CDTag"

        fmri_data = pu.mask_img(fmri_data, mask)

        if FLAGS.betas:
            if FLAGS.average:
                val_trials = labels[labels.CD == 1]
                val_trials = val_trials.sort_values(tag_key)
                val_fmri_data = fmri_data[val_trials.index]
                val_fmri_data = (val_fmri_data[::2] + val_fmri_data[1::2]) / 2
                val_labels = val_trials.iloc[::2]
            else:
                val_trials = labels[(labels.CD == 1) & (labels.Match == "1")]
                val_fmri_data = fmri_data[val_trials.index]
                val_labels = labels.loc[val_trials.index]

        trials = labels[selector]
        if FLAGS.average:
            trials = trials.sort_values(tag_key)
            fmri_data = fmri_data[trials.index]
            fmri_data = (fmri_data[::2] + fmri_data[1::2]) / 2
            labels = trials.iloc[::2]
        else:
            fmri_data = fmri_data[trials.index]
            labels = labels.loc[trials.index]

        cv = CV_LIB.get(FLAGS.cv, KFold)(FLAGS.n_folds)
        # groups = trials["SubRel"] if FLAGS.cv == "relation" else trials["chunks"]
        groups = labels["SubRel"] if FLAGS.cv == "relation" else labels[
            "chunks"]
        # groups = trials["MainRel"] if FLAGS.cv == "relation" else trials["chunks"]
        # model = Ridge(alpha=0.1)
        # model = ElasticNet(alpha=0.1)
        model = ElasticNet(alpha=FLAGS.alpha)
        # model = Ridge(alpha=FLAGS.alpha)
        scoring = make_scorer(corrcoef)

        for mname, model_df in zip(
                model_names, [bart_df, w2vd_df, w2vc_df
                              ]):  #, bartnorm_df, bartpower_df, bart270_df]):
            if len(model_df) > 144:
                model_df = model_df.iloc[::2]
            logging.info("Running {}".format(mname))
            features = model_df.loc[[tag for tag in labels[tag_key]], :]

            if FLAGS.dists:
                features["dists"] = np.concatenate([
                    rsa.pdist(
                        model_df.iloc.loc[[t.split("::")[0],
                                           t.split("::")[1]]],
                        metric="cosine") for t in trials.TrialTag
                ])

            # result = Parallel(n_jobs=MAX_CPU)(delayed(run_voxel)(v, features, fmri_data) for v in range(fmri_data.shape[1]))
            if FLAGS.betas:
                val_features = model_df.loc[
                    [tag for tag in val_labels["CDTag"]], :]
                results = Parallel(n_jobs=MAX_CPU)(
                    delayed(get_betas)(v, model, features, fmri_data,
                                       val_features, val_fmri_data)
                    for v in range(fmri_data.shape[1]))
                result, preds = list(zip(*results))
                result = np.array(result).T
                pu.unmask_img(result, mask).to_filename(
                    os.path.join(
                        paths["root"], "analysis", sub, "encoding",
                        "{}_{}_{}_{}_encoding-betas.nii.gz".format(
                            sub, mname, "cope-LSS", FLAGS.phase)))
                preds = np.array(preds)
                pu.unmask_img(preds, mask).to_filename(
                    os.path.join(
                        paths["root"], "analysis", sub, "encoding",
                        "{}_{}_{}_{}_pred-CD.nii.gz".format(
                            sub, mname, "cope-LSS", FLAGS.phase)))

            if FLAGS.cv:
                result = Parallel(n_jobs=MAX_CPU)(
                    delayed(run_cv_voxel)(v, model, features, fmri_data, cv,
                                          groups, scoring, FLAGS.permutations)
                    for v in range(fmri_data.shape[1]))
                result = np.array(result)
                if FLAGS.permutations:
                    pu.unmask_img(result[:, 0], mask).to_filename(
                        os.path.join(
                            paths["root"], "analysis", sub, "encoding",
                            "{}_{}_{}_{}_cv-{}.nii.gz".format(
                                sub, mname, "cope-LSS", FLAGS.phase,
                                FLAGS.cv)))
                    pu.unmask_img(result[:, 1], mask).to_filename(
                        os.path.join(
                            paths["root"], "analysis", sub, "encoding",
                            "{}_{}_{}_{}_cv-{}_pval.nii.gz".format(
                                sub, mname, "cope-LSS", FLAGS.phase,
                                FLAGS.cv)))
                else:
                    pu.unmask_img(result, mask).to_filename(
                        os.path.join(
                            paths["root"], "analysis", sub, "encoding",
                            "{}_{}_{}_{}_cv-{}.nii.gz".format(
                                sub, mname, "cope-LSS", FLAGS.phase,
                                FLAGS.cv)))