Example #1
0
def mapper(df, is_echo=True):
    # Initialize the map
    m = folium.Map(location=[df.mean()["FAC_LAT"], df.mean()["FAC_LONG"]])

    # Create the Marker Cluster array
    #kwargs={"disableClusteringAtZoom": 10, "showCoverageOnHover": False}
    mc = FastMarkerCluster("")

    # Add a clickable marker for each facility
    for index, row in df.iterrows():
        mc.add_child(
            folium.CircleMarker(location=[row["FAC_LAT"], row["FAC_LONG"]],
                                popup=marker_text(row, is_echo),
                                radius=8,
                                color="black",
                                weight=1,
                                fill_color="orange",
                                fill_opacity=.4))

    m.add_child(mc)
    bounds = m.get_bounds()
    m.fit_bounds(bounds)

    # Show the map
    return m
def mapper(df):
    # Initialize the map
    m = folium.Map(location=[df.mean()["FAC_LAT"], df.mean()["FAC_LONG"]])

    # Create the Marker Cluster array
    #kwargs={"disableClusteringAtZoom": 10, "showCoverageOnHover": False}
    mc = FastMarkerCluster("")

    # Add a clickable marker for each facility
    for index, row in df.iterrows():
        mc.add_child(
            folium.CircleMarker(
                location=[row["FAC_LAT"], row["FAC_LONG"]],
                popup=row["FAC_NAME"] + "<p><a href='" + row["DFR_URL"] +
                "' target='_blank'>Link to ECHO detailed report</a></p>",
                radius=8,
                color="black",
                weight=1,
                fill_color="orange",
                fill_opacity=.4))

    m.add_child(mc)
    bounds = m.get_bounds()
    m.fit_bounds(bounds)

    # Show the map
    return m
Example #3
0
def mapper(df, bounds=None, no_text=False):
    '''
    Display a map of the Dataframe passed in.
    Based on https://medium.com/@bobhaffner/folium-markerclusters-and-fastmarkerclusters-1e03b01cb7b1

    Parameters
    ----------
    df : Dataframe
        The facilities to map.  They must have a FAC_LAT and FAC_LONG field.
    bounds : Dataframe
        A bounding rectangle--minx, miny, maxx, maxy.  Discard points outside.

    Returns
    -------
    folium.Map
    '''

    # Initialize the map
    m = folium.Map(location=[df.mean()["FAC_LAT"], df.mean()["FAC_LONG"]])

    # Create the Marker Cluster array
    #kwargs={"disableClusteringAtZoom": 10, "showCoverageOnHover": False}
    mc = FastMarkerCluster("")

    # Add a clickable marker for each facility
    for index, row in df.iterrows():
        if (bounds is not None):
            if (not check_bounds(row, bounds)):
                continue
        mc.add_child(
            folium.CircleMarker(location=[row["FAC_LAT"], row["FAC_LONG"]],
                                popup=marker_text(row, no_text),
                                radius=8,
                                color="black",
                                weight=1,
                                fill_color="orange",
                                fill_opacity=.4))

    m.add_child(mc)
    bounds = m.get_bounds()
    m.fit_bounds(bounds)

    # Show the map
    return m
Example #4
0
def mapa(gdf):
    """Cria o mapa base, insere marcadores e exporta uma arquivo html."""
    # Criando mapa base com o folium
    media_longitude = gdf['LONGITUDE'].mean()
    media_latitude = gdf['LATITUDE'].mean()
    
    ceara = folium.Map(location=[media_longitude,media_latitude],zoom_start=7.5,
                       tiles='stamentoner', width='100%', height='100%')
    mc = FastMarkerCluster(gdf[['LONGITUDE','LATITUDE',]],
                           popup=list(gdf['Programa']))
    ceara.add_child(mc)
    
    ceara.save('promac.html')
      
Example #5
0
def make_marker_cluster(gdf,
                        make_centroids=True,
                        points_column='geometry',
                        fast=False,
                        name=None,
                        show=False,
                        basemap=None,
                        **kwargs):
    """
    Makes a marker cluster from a gdf and potentially adds it to a map/feature group.

    :param GeoDataFrame gdf: A geodataframe.
    :param bool make_centroids: If true and the geodataframe has polygon geometry, it will make the centroids and use those
        to make the marker cluster.
    :param str or int points_column: If make_centroids is False, will assume the pointa are in this column.
        Defaults to 'geometry'.
    :param bool fast: If True, use a FastMarkerCluster as opposed to a regular MarkerCluster.
    :param str name: Defaults to None. If not None, will generate a FeatureGroup with this name and return that instead of
        the MarkerCluster object.
    :param bool show: Defaults to False. The show parameter for the FeatureGroup that the marker cluster will be added
        to.
    :param folium.Map basemap: Defaults to None. If not none, will add the MarkerCluster or FeatureGroup to the supplied basemap.
    :param kwargs: kwargs to pass to the FastMarkerCluster or MarkerCluster initialization
    :return: Either a FeatureGroup or a MarkerCluster.
    """

    # Possibly make centroids
    if make_centroids:
        gdf['centroids'] = gdf['geometry'].centroid
        points_column = 'centroids'

    # Retrieve points and make markercluster
    points = [
        utilities.simple.retrieve_coords(point) for point in gdf[points_column]
    ]

    if fast:
        marker = FastMarkerCluster(points, **kwargs)
    else:
        marker = MarkerCluster(points, **kwargs)

    # Possibly create featuregroup and possibly add to basemap; then return
    if name is not None:
        feature_group = folium.FeatureGroup(name, show=show)
        marker.add_to(feature_group)
        if basemap is not None:
            feature_group.add_to(basemap)
        return feature_group
    else:
        if basemap is not None:
            marker.add_to(basemap)
        return marker
Example #6
0
def create_map():
    X, cluster_labels = generate_random_data(latitude, longitude, 1000, 100)

    df = pd.DataFrame(X)
    df.to_csv("geo.csv")

    # Loads data from csv into pandas dataframe
    df = pd.read_csv("geo.csv")
    df.head(2)
    print()

    # Stanford coordinates
    coords = [37.427829, -122.170214]

    # creates an empty map zoomed in Stanford
    stan_map = folium.Map(location=coords, zoom_start=12)

    # creates a marker cluster called “Crime cluster”
    marker_cluster = FastMarkerCluster(
        df.iloc[:, 1:].values.tolist()).add_to(stan_map)
    '''
    # add a marker for each event, add it to the cluster, not the map
    for each in df[:100].iterrows():  # for speed purposes delimited data to 15K
        folium.Marker(location=[each[1]["0"], each[1]["1"]]).add_to(
            marker_cluster)
    '''

    display(stan_map)
    # create HTML interface
    fg = folium.FeatureGroup(name="Active Shooter")

    props = lambda x: {
        "fillColor":
        "green" if x["properties"]["POP2005"] <= 10000000 else "orange"
        if 10000000 < x["properties"]["POP2005"] < 20000000 else "red"
    }

    stan_map.add_child(fg)
    '''
    stan_map.add_child(folium.GeoJson(data=open(
        "world_geojson_from_ogr.json", encoding="utf-8-sig").read(),
        name="Population",
        style_function=props))
    '''
    stan_map.add_child(folium.LayerControl())
    stan_map.save(outfile="index.html")
Example #7
0
def geo_location(read_long_csv, lat_long):
    # Reading the latitudes and longitudes csv file
    df = pd.read_csv(read_long_csv)
    # Using Folium package to plot the lat and long
    folium_map = folium.Map(location=lat_long,
                            zoom_start=2,
                            tiles='CartoDB dark_matter')
    FastMarkerCluster(
        data=list(zip(df['lat'].values, df['lon'].values))).add_to(folium_map)
    folium.LayerControl().add_to(folium_map)
    # Saving the map in a html file
    folium_map.save(outfile='map.html')
    out = "map.html"
    # opening the map html file on browser
    webbrowser.open(out, new=2)
    # returning the plotted map
    return folium_map
Example #8
0
def document_map(request,pk):
    mimapa = folium.Map(location=[-34.641552, -58.479811])
    document = get_object_or_404(Document, document_id=pk)
    df = pd.read_csv(document.document)
    df['longitude'] = df['longitude'].replace(r'\s+', np.nan, regex=True)
    df['longitude'] = df['longitude'].replace(r'^$', np.nan, regex=True)
    df['longitude'] = df['longitude'].fillna(-0.99999)
    df['longitude'] = pd.to_numeric(df['longitude'])
    df['latitude'] = df['latitude'].replace(r'\s+', np.nan, regex=True)
    df['latitude'] = df['latitude'].replace(r'^$', np.nan, regex=True)
    df['latitude'] = df['latitude'].fillna(-0.99999)
    df['latitude'] = pd.to_numeric(df['latitude'])

    FastMarkerCluster(data=list(zip(df['latitude'], df['longitude']))).add_to(mimapa)
    m = mimapa._repr_html_()
    context = { 'map': m , 'name': document.name, 'description': document.description, 'document': document}
    return render(request, 'map.html', context)
def render_home():
    neighbourhood_groups = []
    neighborhoods = []
    # accessing cleaned csv file
    df = main_class_obj.cleaned_df
    lats2019 = df['latitude'].tolist()
    lons2019 = df['longitude'].tolist()
    locations = list(zip(lats2019, lons2019))

    # generating folium map with fast marker clusters using latitudes and longitudes
    map1 = folium.Map(location=[55.585901, -105.750596], zoom_start=3.3)
    FastMarkerCluster(data=locations).add_to(map1)

    # saving the html to render it on webpage
    map1.save(outfile="./static/dashboard-map5.html")
    return render_template('index.html',
                           neighbourhood_groups=neighbourhood_groups,
                           neighborhoods=neighborhoods)
Example #10
0
def mapStops(bbox, stopsList):
    minLat = bbox[3]
    minLon = bbox[0]
    maxLat = bbox[1]
    maxLon = bbox[2]
    listpoint = [[maxLat, minLon], [maxLat, maxLon], [minLat, maxLon],
                 [minLat, minLon], [maxLat, minLon]]
    listpoint = [[float(x[0]), float(x[1])] for x in listpoint]
    latlon = [(listpoint[0][0] + listpoint[2][0]) / 2,
              (listpoint[0][1] + listpoint[2][1]) / 2]
    map_stops = folium.Map(location=latlon, zoom_start=10)
    line = folium.PolyLine(listpoint)
    map_stops.add_child(line)
    markerList = []
    for aa in stopsList:
        markerList.append([aa[1], aa[2]])
    points = FastMarkerCluster(markerList, None).add_to(map_stops)
    return map_stops
Example #11
0
def mupLoader(mapElement, data, color):
    # query latitude and longitude
    initLen = len(data)
    print(data)
    # Cleaned Name
    cname = 'UserList'
    # Change Colors here (js callback string)
    callback = (
        'function (row) {'
        'var circle = L.circle(new L.LatLng(row[0], row[1]), {color: "' +
        color + '",  radius: 100});'
        'return circle};')
    # Add Clusters
    Fm = FastMarkerCluster(data.values,
                           callback=callback,
                           name=cname,
                           overlay=True)
    mapElement.add_child(Fm)
def get_dept_clusters(dept_df):
    # Constructing cluster list
    fast_marker_clusters_tuples = (
        (request_df.shape[0],
         FastMarkerCluster(name=request,
                           data=marker_data_generator(request_df),
                           callback=MARKER_CALLBACK,
                           options={'disableClusteringAtZoom': 17},
                           show=False))
        for request, request_df in dept_df.groupby(["Code"]))

    # Creating list of clusters, sorted by size
    fast_marker_clusters = map(
        lambda marker_tuple: marker_tuple[1],
        sorted(fast_marker_clusters_tuples,
               key=lambda marker_tuple: marker_tuple[0],
               reverse=True)[:TOP_REQUEST_NUMBER])

    return fast_marker_clusters
Example #13
0
def marker_cluster_fast(named_data,
                        lonlat=True,
                        filename='tmp_marker_cluster.html',
                        verbose=0):
    if lonlat:
        if verbose > 0: print('transformed to (lat,lon)')
        named_data = {
            name: [(c[1], c[0]) for c in coords]
            for name, coords in named_data.items()
        }

    # get bounding box
    lons, lats = [], []
    for _, coords in named_data.items():
        lats.extend([coord[0] for coord in coords])
        lons.extend([coord[1] for coord in coords])
    w, e, s, n = min(lons), max(lons), min(lats), max(lats)

    # build map
    m = folium.Map()
    add_common_tiles(m)
    m.fit_bounds([(s, w), (n, e)])
    # bind data to map
    callback = """
    function (row) {{
        var icon, marker;
        icon = L.AwesomeMarkers.icon({{
            icon: "map-marker", markerColor: "{color}"}});
        marker = L.marker(new L.LatLng(row[0], row[1]));
        marker.setIcon(icon);
        return marker;
    }};
    """
    colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
    for i, (name, coords) in enumerate(named_data.items()):
        if verbose > 0: print('adding layer of', name)
        FastMarkerCluster(
            data=coords,
            callback=callback.format(color=colors[i % len(colors)])).add_to(m)
    # layer control
    m.add_child(folium.LayerControl())
    m.save(filename)
def test_fast_marker_cluster():
    n = 100
    np.random.seed(seed=26082009)
    data = np.array([
        np.random.uniform(low=35, high=60, size=n),
        np.random.uniform(low=-12, high=30, size=n),
    ]).T
    m = folium.Map([45., 3.], zoom_start=4)
    mc = FastMarkerCluster(data).add_to(m)

    out = normalize(m._parent.render())

    # We verify that imports
    assert '<script src="https://cdnjs.cloudflare.com/ajax/libs/leaflet.markercluster/1.1.0/leaflet.markercluster.js"></script>' in out  # noqa
    assert '<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet.markercluster/1.1.0/MarkerCluster.css"/>' in out  # noqa
    assert '<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/leaflet.markercluster/1.1.0/MarkerCluster.Default.css"/>' in out  # noqa

    # Verify the script part is okay.
    tmpl = Template("""
        var {{ this.get_name() }} = (function(){
            {{ this.callback }}

            var data = {{ this.data|tojson }};
            var cluster = L.markerClusterGroup({{ this.options|tojson }});
            {%- if this.icon_create_function is not none %}
            cluster.options.iconCreateFunction =
                {{ this.icon_create_function.strip() }};
            {%- endif %}

            for (var i = 0; i < data.length; i++) {
                var row = data[i];
                var marker = callback(row);
                marker.addTo(cluster);
            }

            cluster.addTo({{ this._parent.get_name() }});
            return cluster;
        })();
    """)
    expected = normalize(tmpl.render(this=mc))
    assert expected in out
Example #15
0
def makeGraph():
    """
        latitude = df.Latitude.values
        longitude  = df.Longitude.values

    """
    folium_map = folium.Map(
        location=[df.Latitude.values.mean(),
                  df.Longitude.values.mean()],
        tiles='cartodbpositron',
        zoom_start=4,
        width="100",
        height="100")

    callback = (
        'function (row) {'
        'var marker = L.marker(new L.LatLng(row[0], row[1]), {color: "red"});'
        'var icon = L.AwesomeMarkers.icon({'
        "icon: 'info-sign',"
        "iconColor: 'white',"
        "markerColor: 'green',"
        "prefix: 'glyphicon',"
        "extraClasses: 'fa-rotate-0'"
        '});'
        'marker.setIcon(icon);'
        "var popup = L.popup({maxWidth: '300'});"
        "const display_text = {Country: row[2], City: row[3], IP: row[4], bandwidth: row[5], Label: row[6], confidence: row[7], mirai: row[8], organization: row[9], orgType: row[10]};"
        "var mytext = $(`<div id='mytext' class='display_text' style='width: 100.0%; height: 100.0%;'> <b>IP:</b> ${display_text.IP} <br><b>Location:</b> ${display_text.City}, ${display_text.Country}<br><b>Bandwidth:</b> ${display_text.bandwidth} b/s<br><b>Label:</b> ${display_text.Label}<br><b>Confidence:</b> ${display_text.confidence} <br><b>Mirai:</b> ${display_text.mirai} <br><b>Organization:</b> ${display_text.organization} <br><b>Organization Type:</b> ${display_text.orgType}  </div>`)[0];"
        "popup.setContent(mytext);"
        "marker.bindPopup(popup);"
        'return marker};')

    folium_map.add_child(
        FastMarkerCluster(df[[
            'Latitude', 'Longitude', 'Country', 'City', 'ip',
            'scanning Bandwidth', "Label", "Confidence", "Mirai",
            "Organization", "Organization Type"
        ]].values.tolist(),
                          callback=callback))
    folium_div = folium_map._repr_html_()
    return folium_div
Example #16
0
def test(file,mode=1,date=""):

    #ficheiro json
    jFile = file + ".json"

    #caminho para o ficheiro json
    filePath = dataPath+jFile

    #abre o ficheiro
    readFile = open(filePath)
    locations = json.load(readFile)

    #cria o mapa
    map = folium.Map(zoom_start=6)

    #numero de localizacoes
    #print (len(locations['locations']))

    #para todos os locais,
    #retira latitude/longitude
    #e insere na lista de pontos
    points = []
    for location in locations['locations']:
        if(date != ""):
            time = getTime(location)
            if date in time:
                appendPoint(points,location)
        else:
            appendPoint(points,location)

    if mode:# =1 , desenha os pontos
        map.add_child(FastMarkerCluster(points))
        map.save(mapsPath+file+"_points"+".html")
    else:   # =0 , desenha o heatmap
        map.add_child(HeatMap(points,max_val=50))
        map.save(mapsPath+file+"_heat"+".html")

    #fecha o ficheiro
    readFile.close()
def create_map(csv_file, output_html):
    mood_content = load_csv_file(
        csv_file)  #Loading the csv file into the mood_content

    #Classify each mood_content item in country locations
    mood_location = {}  #We are declaring a dictionary that
    for item in mood_content:
        if item['location'] not in mood_location:
            mood_location[item['location']] = {'Positive': 0, 'Negative': 0}
        mood_location[item['location']][item[
            'mood']] += 1  #for each location the mood is counted according to its occurances

    my_map = folium.Map()  #folium is a library that is used to create a Map
    my_map.save(
        output_html)  #And then we are saving that map into the html file
    world = geopandas.read_file(
        geopandas.datasets.get_path('naturalearth_lowres'))

    country_names = []
    moods = []
    for country in mood_location:
        mood = mood_location[country]['Positive'] / (
            mood_location[country]['Positive'] +
            mood_location[country]['Negative']
        )  #We are calculating the overall postive tweets value pecrcentage
        moods.append(mood)  #And we are appending each mood into the moods list
        country_names.append(
            country
        )  # And also we are appending each country name into the country_names list

    data_to_plot = pd.DataFrame(
        {
            'Country': country_names,
            'Mood': moods
        }
    )  #We are creating a dataframe inside which we have two columns Country=All country names ,Mood=That says a number of positive tweets of a brand in each country

    folium.Choropleth(  #we are using this folium to color the different parts of a country in a continent
        geo_data=world,
        name='choropleth',
        data=data_to_plot,
        columns=['Country', 'Mood'
                 ],  #Columns that we are going to pass is Country and mood
        key_on='feature.properties.name',
        fill_color='YlGn',  #Colors are yellow and green
        fill_opacity=0.7,
        line_opacity=0.2,
        legend_name='Mood').add_to(my_map)

    cluster_data = []
    for row in mood_content:  #we are retriving each row from the csv table
        if row['latitude'] != '':  #if the latitude and longitude is not empty we are doing the next step
            cluster_data.append(
                [float(row['latitude']),
                 float(row['longitude'])]
            )  # We are passing list of latitude and longitude and appending it into the cluster_data

    FastMarkerCluster(cluster_data).add_to(
        my_map
    )  #we are passing the list of latitudes,logitudes a cluster_data to FastMarkerCluster which forms a cluster kind of thing into the map.So the no of mood items in each longitude and latitude will be in the map

    folium.LayerControl().add_to(
        my_map)  #we are giving the layer control to the my_map value
    my_map.save(output_html
                )  #And at last we are saving the my_map into the output.html
Example #18
0
])
## Distribution of price over regions
plt.figure(figsize=(10, 6))
sns.boxplot(y="price", x='neighbourhood_group', data=df)
plt.title("Price distribution by region")
plt.show()

## Finding the distribution of listings by region
plt.figure(figsize=(10, 6))
sns.scatterplot("longitude", "latitude", hue="neighbourhood_group", data=df)
plt.title("Distribution of listings by region")
plt.show()

## Listing distribution through folium
m = folium.Map([1.38255, 103.83580], zoom_start=11)
m.add_child(FastMarkerCluster(df[['latitude', 'longitude']].values.tolist()))
display(m)

## Review distribution by minimum nights
plt.figure(figsize=(10, 6))
sns.scatterplot(x='minimum_nights', y='number_of_reviews', data=df)
plt.title("Distribution of reviews by minimum nights")

## Listing barplot distribution by region
plt.figure(figsize=(10, 6))
sns.countplot(x='neighbourhood_group', hue="risk_rating", data=df)
plt.title("Distribution of risky listings by region")
plt.show()

## Listing barplot distribution by room type
plt.figure(figsize=(10, 6))
Example #19
0
    if sLongitude != 0.0 and sLatitude != 0.0:
        DataClusterList=list([sLatitude, sLongitude])
        DataPointList=list([sLatitude, sLongitude, sDescription])
        t+=1
        if t==1:
            DataCluster=[DataClusterList]
            DataPoint=[DataPointList]
        else:
            DataCluster.append(DataClusterList)
            DataPoint.append(DataPointList)
data=DataCluster
pins=pd.DataFrame(DataPoint)
pins.columns = [ 'Latitude','Longitude','Description']
################################################################
stops_map1 = Map(location=[48.1459806, 11.4985484], zoom_start=5)
marker_cluster = FastMarkerCluster(data).add_to(stops_map1)
sFileNameHtml=Base+'/02-Krennwallner/06-Report/01-EDS/02-Python/Billboard1.html'
stops_map1.save(sFileNameHtml)
webbrowser.open('file://' + os.path.realpath(sFileNameHtml))
################################################################
stops_map2 = Map(location=[48.1459806, 11.4985484], zoom_start=5)
for name, row in pins.iloc[:100].iterrows():
    Marker([row["Latitude"],row["Longitude"]], popup=row["Description"]).add_to(stops_map2)
sFileNameHtml=Base+'/02-Krennwallner/06-Report/01-EDS/02-Python/Billboard2.html'
stops_map2.save(sFileNameHtml)
webbrowser.open('file://' + os.path.realpath(sFileNameHtml))
################################################################
stops_heatmap = Map(location=[48.1459806, 11.4985484], zoom_start=5)
stops_heatmap.add_child(HeatMap([[row["Latitude"], row["Longitude"]] for name, row in pins.iloc[:100].iterrows()]))
sFileNameHtml=Base+'/02-Krennwallner/06-Report/01-EDS/02-Python/Billboard_heatmap.html'
stops_heatmap.save(sFileNameHtml)
    "icon: 'info-sign',"
    "iconColor: 'white',"
    "markerColor: 'red',"
    "prefix: 'glyphicon',"
    "extraClasses: 'fa-rotate-0'"
    '});'
    'marker.setIcon(icon);'
    "var popup = L.popup({maxWidth: '300'});"
    "const display_text = {text: row[2]};"
    "var mytext = $(`<div id='mytext' class='display_text' style='width: 100.0%; height: 100.0%;'> ${display_text.text}</div>`)[0];"
    "popup.setContent(mytext);"
    "marker.bindPopup(popup);"
    'return marker};')

FastMarkerCluster(data=list(
    zip(data['lat_y1'].values, data['lon_x1'].values,
        data['BeachName'].values)),
                  callback=callback).add_to(folium_map)
folium.LayerControl().add_to(folium_map)

folium_map.save(f'{here}/templates/{MAP_FILE}')

# Clean files
logging.info("Cleaning files...")

for path_spec in CLEAN_FILES:
    # Make paths absolute and relative to this path
    abs_paths = glob(os.path.normpath(os.path.join(here, path_spec)))
    for path in [str(p) for p in abs_paths]:
        if not path.startswith(here):
            # Die if path in CLEAN_FILES is absolute + outside this directory
            raise ValueError("%s is not a path inside %s" % (path, here))
Example #21
0
from folium.plugins import FastMarkerCluster
import pandas as pd
import folium

df = pd.read_csv("addresses_geocoded.csv", index_col=0)
#print(df.head(5))
df = df.dropna()
df = df.reset_index(drop=True)
#print(df)

folium_map = folium.Map(location=[37.983810, 23.727539],
                        zoom_start=2,
                        tiles='CartoDB dark_matter')
#folium_map.save('map.html')

FastMarkerCluster(data=list(zip(df['Latitude'].values,
                                df['Longitude'].values))).add_to(folium_map)
folium.LayerControl().add_to(folium_map)
folium_map

folium_map.save('map.html')
Example #22
0
#import streamlit as st
import pandas as pd
import folium
from folium.plugins import FastMarkerCluster

deathlocs = pd.read_csv("datas.csv")

folium_map = folium.Map(tiles='CartoDB dark_matter')


FastMarkerCluster(data=list(zip(deathlocs['lat'].values, deathlocs['lon'].values))).add_to(folium_map)
folium.LayerControl().add_to(folium_map)
folium_map.save('index.html')

#st.map(deathlocs)
listings = listings.drop(columns=['neighbourhood_group'])
listings['host_response_rate'] = pd.to_numeric(
    listings['host_response_rate'].str.strip('%'))

listings.head()
feq = listings['neighbourhood'].value_counts().sort_values(ascending=True)
feq.plot.barh(figsize=(10, 8), color='b', width=1)
plt.title("Number of listings by neighbourhood", fontsize=20)
plt.xlabel('Number of listings', fontsize=12)
plt.show()
lats2018 = listings['latitude'].tolist()
lons2018 = listings['longitude'].tolist()
locations = list(zip(lats2018, lons2018))

map1 = folium.Map(location=[52.3680, 4.9036], zoom_start=11.5)
FastMarkerCluster(data=locations).add_to(map1)
map1
freq = listings['room_type'].value_counts().sort_values(ascending=True)
freq.plot.barh(figsize=(15, 3), width=1, color=["g", "b", "r"])
plt.show()
listings.property_type.unique()
prop = listings.groupby(['property_type', 'room_type']).room_type.count()
prop = prop.unstack()
prop['total'] = prop.iloc[:, 0:3].sum(axis=1)
prop = prop.sort_values(by=['total'])
prop = prop[prop['total'] >= 100]
prop = prop.drop(columns=['total'])

prop.plot(kind='barh',
          stacked=True,
          color=["r", "b", "g"],
Example #24
0
        icon = L.AwesomeMarkers.icon({
            icon: "map-marker", markerColor: "red"});
        marker = L.marker(new L.LatLng(row[0], row[1]));
        marker.setIcon(icon);
        marker.bindPopup('dwd weather station').openPopup
        marker.on('click', onClick);
        function onClick(e) {
            var popup = e.target.getPopup();
            popup.setContent("This is a weather station at " + e.latlng.toString())
        }
        return marker;
    };"""

#getting data from stations dictionary
stationnames = []
lats = []
lons = []
for k, v in Stations.items():
    stationnames.append(v.name)
    lats.append(float(v.geobr))
    lons.append(float(v.geola))

FastMarkerCluster(
    data=list(zip(lats, lons)),
    callback=callback  #[personalized_callback(name) for name in stationnames]
).add_to(map_1)

#save map and open in browser
map_1.save('./map.html')
webbrowser.open('./map.html')
def plot_and_save_map(df, filename):
    #    seed = int(np.random.uniform() * 100)
    #    df = df.sample(frac=0.5, replace=False, random_state=seed)
    #    print("LENGTH OF SAMPLED DF " + str(len(df)))

    lat_long_df = df

    print()
    print(lat_long_df)
    print(len(lat_long_df))

    # create map
    map = folium.Map(
        location=[53.8, 4.5],
        tiles='cartodbpositron',
        zoom_start=3,
    )

    # create layers
    callback = (
        'function (row) {'
        'var marker = L.marker(new L.LatLng(row[0], row[1]), {color: "#8a8a8a"});'
        'var icon = L.AwesomeMarkers.icon({'
        "icon: 'user',"
        "iconColor: 'white',"
        "markerColor: 'black',"
        "prefix: 'glyphicon',"
        "extraClasses: 'fa-rotate-0'"
        '});'
        'marker.setIcon(icon);'
        'return marker};')
    #"var popup = L.popup({maxWidth: '300'});"
    #"const display_text = {text: row[2]};"
    #"var mytext = $(`<div id='mytext' class='display_text' style='width: 100.0%; height: 100.0%;'> ${display_text.text}</div>`)[0];"
    #"popup.setContent(mytext);"
    #"marker.bindPopup(popup);"
    #'return marker};')

    # Density layer
    FastMarkerCluster(data=list(
        zip(lat_long_df['geo_lat'].values, lat_long_df['geo_long'].values)),
                      name='Density',
                      callback=callback).add_to(map)

    # Sentiment layer
    sentiment_layer = folium.FeatureGroup(name="Sentiment")
    for index, row in lat_long_df.iterrows():
        sentiment_layer.add_child(
            folium.CircleMarker(
                [row['geo_lat'], row['geo_long']],
                radius=6,
                color=row['hex_colour'],
                fill=True,
                fill_opacity=0.6,
                popup=('Sentiment: ' + str(row['sentiment'])[0:5] +
                       '\n Classification: ' +
                       str(row['labels'])))).add_to(map)
    map.add_child(sentiment_layer, name='Sentiment')

    # Classification layer
    classification_layer = folium.FeatureGroup(name="Classification")
    for index, row in lat_long_df.iterrows():
        classification_layer.add_child(
            folium.CircleMarker(
                [row['geo_lat'], row['geo_long']],
                radius=6,
                color=row['classification_colour'],
                fill=True,
                fill_opacity=0.3,
                popup=('Sentiment: ' + str(row['sentiment'])[0:5] +
                       '\n Classification: ' +
                       str(row['labels'])))).add_to(map)
    map.add_child(classification_layer, name='Classification')

    # heatmap layer
    # convert to (n, 2) nd-array format for heatmap
    lat_long_matrix = lat_long_df[['geo_lat', 'geo_long']].as_matrix()
    map.add_child(HeatMap(lat_long_matrix, radius=12, name='Heatmap'))

    folium.LayerControl().add_to(map)
    map.save(filename)
Example #26
0
    time = row['date_start']
    iframe = folium.IFrame(table('Deaths', name, deaths, time),
                           width=width,
                           height=height)
    popups[year].append(iframe)

h = folium.FeatureGroup(name='Deaths')
print(len(locations))
print(len(popups))
#for year in tqdm(conflict_df.date_start.unique()-1989):
#
#    mc = MarkerCluster(locations=locations[year], popups=popups[year], overlay=True, control=True)
#    mc.add_to(m)
#folium.LayerControl().add_to(m)

h.add_child(FastMarkerCluster(locations))
#m.add_child(h)
m.save(os.path.join('results', "output_map.html"))

m = folium.Map(tiles='cartodbpositron', world_copy_jump=True, no_wrap=True)

event_list = conflict_df[["latitude", "longitude", "best", "date_start"]]
list_of_event = [[row.latitude, row.longitude, row.best]
                 for row in event_list.itertuples()]
date_list = [row.date_start for row in event_list.itertuples()]
hm = HeatMapWithTime(data=list_of_event[:100],
                     index=event_list.date_start[:100],
                     max_opacity=0.3)
hm.add_to(m)
m.save(os.path.join('results', "output_map_heat.html"))
Example #27
0
def plot_and_save_map(df, filename, data_path):
    """
    Extract coordinates, plot on an interactive map and save to html file
    """

#    N = 3000
#    lat_long_df = df.head(N)
    lat_long_df = df
    #seed = int(np.random.uniform() * 100)
    #df = df.sample(frac=0.6, replace=False, random_state=seed)
    #print("LENGTH OF SAMPLED DF " + str(len(df)))
    #lat_long_df = df

    #lat_long_df[['geo_lat', 'geo_long']] = lat_long_df['location'].apply(lambda x: get_latitude_longitude(x))
    #lat_long_df['location'] = lat_long_df['location'].apply(lambda x: convert_to_string(x))
    #lat_long_df['geo_lat'] = lat_long_df['geo_lat'].apply(lambda x: convert_to_string(x))

    # # drop NaNs and save latitude longitude data to csv
    #lat_long_df.dropna(subset=['geo_lat'])
    #lat_long_df = lat_long_df.loc[lat_long_df['geo_lat'] != 'NaN']
    #lat_long_df = lat_long_df.loc[lat_long_df['geo_lat'] != 'nan']
    #lat_long_df.to_csv(data_path, index=False)   

 
    print()
    print("LAT LONG DF:")
    print(lat_long_df)
    print(len(lat_long_df))

    # create map
    map = folium.Map(
        location=[53.8, 4.5],
        tiles='cartodbpositron',
        zoom_start=3,
    )

    # create layers
    callback = ('function (row) {' 
                'var marker = L.marker(new L.LatLng(row[0], row[1]), {color: "#8a8a8a"});'
                'var icon = L.AwesomeMarkers.icon({'
                "icon: 'user',"
                "iconColor: 'white',"
                "markerColor: 'black',"
                "prefix: 'glyphicon',"
                "extraClasses: 'fa-rotate-0'"
                    '});'
                'marker.setIcon(icon);'
                'return marker};')

    iconCreateFunction = ('function(cluster) {'
                'var childCount = cluster.getChildCount();' 
                'var c = " marker-cluster-medium";'
#                'if (childCount < 50) {'
#                    'c += "large";'
#                '} else if (childCount < 300) {'
#                    'c += "medium";'
#                '} else {'
#                    'c += "small";'
#                '}'
                'return new L.DivIcon({ html: "<div><span>" + childCount + "</span></div>", className: "marker-cluster" + c, iconSize: new L.Point(35, 35) });}')    



    # Density layer
    FastMarkerCluster(
    data=list(zip(lat_long_df['geo_lat'].values, lat_long_df['geo_long'].values)), 
    name='Density', 
    icon_create_function=iconCreateFunction,
    callback=callback
    ).add_to(map)
   

    # Sentiment layer
    sentiment_layer = folium.FeatureGroup(name="Sentiment")
    for index, row in lat_long_df.iterrows():
        sentiment_layer.add_child(folium.CircleMarker(
        [row['geo_lat'], row['geo_long']], 
        radius=3,
        color='clear', 
        fill_color=row['hex_colour'], 
        fill='true', 
        fill_opacity=0.75, 
        popup=('Sentiment: ' + str(row['sentiment'])[0:5] + '\n Classification: ' + str(row['labels']) ) 
        )).add_to(map)
    map.add_child(sentiment_layer, name='Sentiment')



    # Classification layer
    classification_layer = folium.FeatureGroup(name="Classification")
    for index, row in lat_long_df.iterrows():
        classification_layer.add_child(folium.CircleMarker(
        [row['geo_lat'], row['geo_long']], 
        radius=3,
        color='clear', 
        fill_color=row['classification_colour'], 
        fill='true', 
        fill_opacity=0.75, 
        popup=('Sentiment: ' + str(row['sentiment'])[0:5] + '\n Classification: ' + str(row['labels']) ) 
        )).add_to(map)
    map.add_child(classification_layer, name='Classification')


    # heatmap layer
    lat_long_matrix = lat_long_df[['geo_lat', 'geo_long']].as_matrix()
    map.add_child(
    HeatMap(lat_long_matrix, 
    radius=12,
    name='Heatmap')
    )


    folium.LayerControl().add_to(map)
    map.save(filename)
Example #28
0
def well_map():
    url = 'https://npdfactpages.npd.no/downloads/shape/wlbPoint.zip'
    # change path to your local directory
    urllib.request.urlretrieve(url, 'data/wlbPoint.zip')
    # change path to your local directory
    wells_explo = geopandas.read_file('zip://data/wlbPoint.zip',
                                      encoding='utf-8')

    wells_explo['wlbEwDesDeg'] = wells_explo['geometry'].x
    wells_explo['wlbNsDecDeg'] = wells_explo['geometry'].y

    wells_explo_sel = wells_explo.filter([
        'wbName', 'well_name', 'discovery', 'field', 'prodLicenc', 'well_type',
        'drilOperat', 'entryYear', 'cmplYear', 'content', 'main_area',
        'totalDepth', 'age_at_TD', 'fmTD', 'discWelbor', 'geometry',
        'wlbEwDesDeg', 'wlbNsDecDeg'
    ],
                                         axis=1)

    wells_explo_all = wells_explo_sel.loc[wells_explo_sel['well_type'].isin(
        ['EXPLORATION'])]

    map_wells = folium.Map(location=[
        wells_explo_all['wlbNsDecDeg'].mean(),
        wells_explo_all['wlbEwDesDeg'].mean()
    ],
                           zoom_start=5,
                           tiles='cartodbpositron')

    fs = Fullscreen()

    # adding an extra map background in the layer menu
    tile = folium.TileLayer('OpenStreetMap').add_to(map_wells)
    """ defining parameters for our markers and the popups when clicking on single markers """
    callback = (
        'function (row) {'
        'var marker = L.marker(new L.LatLng(row[0], row[1]));'
        'var icon = L.AwesomeMarkers.icon({'
        "icon: 'star',"
        "iconColor: 'black',"
        "markerColor: 'lightgray',"
        '});'
        'marker.setIcon(icon);'
        "var popup = L.popup({maxWidth: '300'});"
        "const display_text = {text: '<b>Name: </b>' + row[2] + '</br>' + '<b> Age at TD: </b>' + row[3]};"
        "var mytext = $(`<div id='mytext' class='display_text' style='width: 100.0%; height: 100.0%;'> ${display_text.text}</div>`)[0];"
        "popup.setContent(mytext);"
        "marker.bindPopup(popup);"
        'return marker};')
    """ creating clusters with FastMarkerCluster """
    fmc = FastMarkerCluster(
        wells_explo_all[['wlbNsDecDeg', 'wlbEwDesDeg', 'wbName',
                         'age_at_TD']].values.tolist(),
        callback=callback)
    fmc.layer_name = 'Exploration Wells'

    map_wells.add_child(fmc)  # adding fastmarkerclusters to map
    map_wells.add_child(fs)  # adding fullscreen button to map

    folium.LayerControl().add_to(map_wells)  # adding layers to map
    return map_wells._repr_html_()
}

df_new['lat_long'] = df_new['list_unique_city'].map(d)

df_new = df_new.drop(columns='list_unique_city')

df_new['lat_long'] = df_new['lat_long'].astype(str)

lat_long = df_new['lat_long'].str.strip('()').str.split(
    ', ', expand=True).rename(columns={
        0: 'Latitude',
        1: 'Longitude'
    })

final_df = pd.merge(df_new, lat_long, left_index=True, right_index=True)

final_df = final_df.drop(columns='lat_long')

final_df[['Latitude', 'Longitude']] = final_df[['Latitude',
                                                'Longitude']].astype(float)

# center on Liberty Bell
m = folium.Map(location=[31.7683, 35.2137], zoom_start=4)

# add marker for Liberty Bell
m.add_child(
    FastMarkerCluster(final_df[['Latitude', 'Longitude']].values.tolist()))

# call to render Folium map in Streamlit
folium_static(m)
Example #30
0
    def create_map(self, data):

        try:
            len(
                data
            )  #it is initialized as 0 so it will error if its 0 and will go to except
            if len(data) >= 5000:

                # ============================== FAST CLUSTER ==============================
                print("Creating map...")
                m2 = folium.Map(
                    location=[40, -100],
                    tiles='cartodbdark_matter',
                    # cartodbdark_matter #cartodbpositron #stamenwatercolor #stamenterrain #openstreetmap
                    zoom_start=3.5,
                    min_zoom=3.5,
                )
                #
                callback = ('''
                        function (row) {
                        var circle = L.circle(new L.LatLng(row[0], row[1]), {color: '#1f77b4', radius: 100});
                        return circle};
                                        ''')

                m2.add_child(
                    FastMarkerCluster(data[['Start_Lat',
                                            'Start_Lng']].values.tolist(),
                                      callback=callback))

                m2.save("map.html")
                #m2.save("mapcluster.html")
            else:
                # ============================== CREATE CIRCLE INDIVIDUAL POINT MAP ==============================
                # MAP  - Create a Map instance
                print("Creating map...")

                # create gradient color for map
                mlength = len(data)
                n = 4
                color = plt.cm.brg(np.linspace(0.01, 0.5,
                                               n))  #CMRmap, gnuplot2
                colors = []
                for i in range(int(mlength / n)):
                    for j in color:
                        colors.append(matplotlib.colors.to_hex(j))
                print(color)
                print(list(colors))

                m = folium.Map(
                    location=[40, -100],
                    tiles='cartodbdark_matter',
                    # cartodbdark_matter #cartodbpositron #stamenwatercolor #stamenterrain #openstreetmap
                    zoom_start=3.5,
                    min_zoom=3.5,
                )

                for color, sev, lat, lan, description, street, city, state, zipcode in zip(
                        colors, data['Severity'], data['Start_Lat'],
                        data['Start_Lng'], data['Description'], data['Street'],
                        data['City'], data['State'], data['Zipcode']):
                    print(description, type(description), street, type(street),
                          city, type(city), state, type(state), zipcode,
                          type(zipcode))
                    popup = "<b>Severity: " + str(
                        sev
                    ) + "</b> <br><br> Address: " + street + ", " + city + ", " + state + ", " + zipcode + "<br><br><i>Description: " + description + "</i>"
                    if sev == 1:
                        color = "green"
                    elif sev == 2:
                        color = "#1f77b4"
                    elif sev == 3:
                        color = "#5800a7"
                    elif sev == 4:
                        color = "#fe0100"
                    else:
                        color = "white"
                    # ============================== CIRCLE ==============================
                    # CIRCLE MARKERS  - Add the dataframe markers in the map
                    folium.Circle(
                        #location=[data.iloc[i]['Start_Lat'], data.iloc[i]['Start_Lng']],
                        #popup=data.iloc[i]['Street'] + ", " + data.iloc[i]['City'] + ", " + data.iloc[i]['State'] + ", " + data.iloc[i]['Zipcode'],
                        location=[lat, lan],
                        popup=popup,
                        radius=1000,
                        #stroke settings
                        stroke=False,
                        weight=1,
                        color=color,
                        opacity=0.2,
                        #fill settings
                        fill=True,
                        fill_color=color,
                        fill_opacity=0.8,
                    ).add_to(m)
                # Save the map
                m.save("map.html")
        except:
            print("Initializing map...")
            m3 = folium.Map(
                location=[40, -100],  #37.0902, -95.7129
                tiles='cartodbdark_matter',
                # cartodbdark_matter #cartodbpositron #stamenwatercolor #stamenterrain #openstreetmap
                zoom_start=3.5,
                min_zoom=3.5,
            )
            m3.save("map.html")
        print("Map created")