Example #1
0
 def test_wall(self):
     env = fse.FoodSearch(obs_horizon=2, n_noise_channels=2)
     self.assertListEqual(
         env.board[env.wall_distance_from_boundary,
         env.wall_distance_from_boundary:-env.wall_distance_from_boundary,
         env.wall_channel].tolist(),
         [1]*(env.board_size - 2*env.wall_distance_from_boundary)
     )
     self.assertListEqual(
         env.board[-env.wall_distance_from_boundary - 1,
         env.wall_distance_from_boundary:-env.wall_distance_from_boundary,
         env.wall_channel].tolist(),
         [1]*(env.board_size - 2*env.wall_distance_from_boundary)
     )
     self.assertListEqual(
         env.board[env.wall_distance_from_boundary:-env.wall_distance_from_boundary,
         env.wall_distance_from_boundary,
         env.wall_channel].tolist(),
         [1]*(env.board_size - 2*env.wall_distance_from_boundary)
     )
     self.assertListEqual(
         env.board[env.wall_distance_from_boundary:-env.wall_distance_from_boundary,
         -env.wall_distance_from_boundary - 1,
         env.wall_channel].tolist(),
         [1]*(env.board_size - 2*env.wall_distance_from_boundary)
     )
Example #2
0
 def test_free_agent_neighborhood(self):
     env = fse.FoodSearch(obs_horizon=1, n_noise_channels=2)
     for i in range(1000):
         observation = env.reset()
         # No great apples in observation
         self.assertTrue(
             np.all(observation[:, :, 0] == 0),
             msg=f'{observation[:, :, 0]}'
         )
Example #3
0
 def test_rewards(self):
     env = fse.FoodSearch(obs_horizon=2, n_noise_channels=2)
     observation = env.reset()
     env.board = np.zeros_like(env.board)
     env.agent_position = np.array([8, 8])
     env.board[7, 8, 0] = 1
     observation, reward, done, _ = env.step(0)  # North
     self.assertTrue(done)
     self.assertEqual(reward, env.apple_rewards[0])
Example #4
0
    def test_reset(self):
        env = fse.FoodSearch(obs_horizon=2, n_noise_channels=2,
                             rng=np.random.RandomState(1234567))
        observation = env.reset()
        self.assertEqual(observation.shape, env.observation_space.shape)
        self.assertTrue(
            all(x in {0, 1} for x in observation.flatten())
        )

        # Object encoding part of board has to have unique object at each location
        self.assertTrue(
            np.all(np.sum(env.board[:, :, :len(env.apple_rewards)],
                          axis=-1).flatten() <= 1)
        )

        self.assertTrue(
            np.any(np.sum(env.board[:, :, :],
                          axis=-1).flatten() > 1)
        )
        self.assertListEqual(
            env.board[3, 3].tolist(),
            [1, 0, 0, 0, 1]
        )
Example #5
0
    def test_actions(self):
        env = fse.FoodSearch(obs_horizon=2, n_noise_channels=2)
        observation = env.reset()
        env.board = np.zeros_like(env.board)
        env.agent_position = np.array([8, 8])
        observation, reward, done, _ = env.step(0)
        self.assertListEqual(env.agent_position.tolist(),
                             [7, 8])
        self.assertFalse(done)

        observation, reward, done, _ = env.step(1)
        self.assertListEqual(env.agent_position.tolist(),
                             [7, 9])
        self.assertFalse(done)

        observation, reward, done, _ = env.step(2)
        self.assertListEqual(env.agent_position.tolist(),
                             [8, 9])
        self.assertFalse(done)

        observation, reward, done, _ = env.step(3)
        self.assertListEqual(env.agent_position.tolist(),
                             [8, 8])
        self.assertFalse(done)