def update_result_table_geometry_column(self, options):
        pSql = '''alter table {vmt_schema}.{vmt_result_table} add column wkb_geometry geometry (GEOMETRY, 4326);
        '''.format(**options)
        execute_sql(pSql)

        pSql = '''
        update {vmt_schema}.{vmt_result_table} b set wkb_geometry = a.wkb_geometry
            from (select id, wkb_geometry from {uf_canvas_schema}.{uf_canvas_table}) a
            where cast(a.id as int) = cast(b.id as int);
        CREATE INDEX ON {vmt_schema}.{vmt_result_table}  USING gist (wkb_geometry);
        '''.format(**options)

        execute_sql(pSql)

        updated = datetime.datetime.now()
        truncate_table(options['vmt_schema'] + '.' + options['vmt_rel_table'])

        pSql = '''
        insert into {vmt_schema}.{rel_table} ({rel_column}, updated)
          select id, '{updated}' from {vmt_schema}.{vmt_result_table};'''.format(
            vmt_schema=options['vmt_schema'],
            vmt_result_table=options['vmt_result_table'],
            rel_table=options['vmt_rel_table'],
            rel_column=options['vmt_rel_column'],
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(
            options['config_entity'],
            options['config_entity'].computed_db_entities(
                key=DbEntityKey.VMT)[0])
Example #2
0
    def update_result_table_geometry_column(self, options):
        pSql = '''alter table {vmt_schema}.{vmt_result_table} add column wkb_geometry geometry (GEOMETRY, 4326);
        '''.format(**options)
        execute_sql(pSql)

        pSql = '''
        update {vmt_schema}.{vmt_result_table} b set wkb_geometry = a.wkb_geometry
            from (select id, wkb_geometry from {uf_canvas_schema}.{uf_canvas_table}) a
            where cast(a.id as int) = cast(b.id as int);
        CREATE INDEX ON {vmt_schema}.{vmt_result_table}  USING gist (wkb_geometry);
        '''.format(**options)

        execute_sql(pSql)

        updated = datetime.datetime.now()
        truncate_table(options['vmt_schema'] + '.' + options['vmt_rel_table'])

        pSql = '''
        insert into {vmt_schema}.{rel_table} ({rel_column}, updated)
          select id, '{updated}' from {vmt_schema}.{vmt_result_table};'''.format(
            vmt_schema=options['vmt_schema'],
            vmt_result_table=options['vmt_result_table'],
            rel_table=options['vmt_rel_table'],
            rel_column=options['vmt_rel_column'],
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(options['config_entity'], options['config_entity'].computed_db_entities(key=DbEntityKey.VMT)[0])
    def importer(self, config_entity, db_entity, **kwargs):
        """
            Creates various GeojsonFeature classes by importing geojson and saving it to the database via a dynamic subclass of GeojsonFeature
        :schema: The optional schema to use for the dynamic subclass's meta db_table attribute, which will allow the class's table to be saved in the specified schema. Defaults to public
        :data: Optional python dict data to use instead of loading from the db_entity.url
        :return: a list of lists. Each list is a list of features of distinct subclass of GeoJsonFeature that is created dynamically. To persist these features, you must first create the subclass's table in the database using create_table_for_dynamic_class(). You should also register the table as a DbEntity.
        """
        if self.seed_data:
            data = geojson.loads(jsonify(self.seed_data), object_hook=geojson.GeoJSON.to_instance)
        else:
            fp = open(db_entity.url.replace('file://', ''))
            data = geojson.load(fp, object_hook=geojson.GeoJSON.to_instance)
        feature_class_creator = FeatureClassCreator(config_entity, db_entity)
        # find all unique properties
        feature_class_configuration = feature_class_creator.feature_class_configuration_from_geojson_introspection(data)
        feature_class_creator.update_db_entity(feature_class_configuration)
        feature_class = feature_class_creator.dynamic_model_class(base_only=True)
        # Create our base table. Normally this is done by the import, but we're just importing into memory
        create_tables_for_dynamic_classes(feature_class)
        # Now write each feature to our newly created table
        for feature in map(lambda feature: self.instantiate_sub_class(feature_class, feature), data.features):
            feature.save()
        # Create the rel table too
        rel_feature_class = feature_class_creator.dynamic_model_class()
        create_tables_for_dynamic_classes(rel_feature_class)

        # PostGIS 2 handles this for us now
        # if InformationSchema.objects.table_exists(db_entity.schema, db_entity.table):
        #     # Tell PostGIS about the new geometry column or the table
        #     sync_geometry_columns(db_entity.schema, db_entity.table)

        # Create association classes and tables and populate them with data
        create_and_populate_relations(config_entity, db_entity)
    def write_results_to_database(self, options, public_health_output_list):

        drop_table(
            '{grid_outcome_schema}.{grid_outcome_table}'.format(**options))

        attribute_list = filter(lambda x: x != 'id', self.outcome_fields)
        options['output_field_syntax'] = 'id int, ' + \
                                         create_sql_calculations(attribute_list, '{0} numeric(20,8)')

        execute_sql(
            "create table {grid_outcome_schema}.{grid_outcome_table} ({output_field_syntax});"
            .format(**options))

        output_textfile = StringIO("")
        for row in public_health_output_list:
            stringrow = []
            for item in row:
                if isinstance(item, int):
                    stringrow.append(str(item))
                else:
                    stringrow.append(str(round(item, 8)))
            output_textfile.write("\t".join(stringrow) + "\n")

        output_textfile.seek(os.SEEK_SET)
        #copy text file output back into Postgres
        copy_from_text_to_db(
            output_textfile,
            '{grid_outcome_schema}.{grid_outcome_table}'.format(**options))
        output_textfile.close()
        ##---------------------------
        pSql = '''alter table {grid_outcome_schema}.{grid_outcome_table}
                    add column wkb_geometry geometry (GEOMETRY, 4326);'''.format(
            **options)
        execute_sql(pSql)

        pSql = '''update {grid_outcome_schema}.{grid_outcome_table} b set
                    wkb_geometry = st_setSRID(a.wkb_geometry, 4326)
                    from (select id, wkb_geometry from {source_grid_schema}.{source_grid_table}) a
                    where cast(a.id as int) = cast(b.id as int);
        '''.format(**options)
        execute_sql(pSql)

        add_geom_idx(options['grid_outcome_schema'],
                     options['grid_outcome_table'], 'wkb_geometry')
        add_primary_key(options['grid_outcome_schema'],
                        options['grid_outcome_table'], 'id')

        # Since not every grid cell results in a grid_outcome, we need to wipe out the rel
        # table and recreate it to match the base grid_coutcome table. Otherwise there will
        # be to many rel table rows and cloning the DbEntity or ConfigEntity will fail
        logger.info(
            "Writing to relative table {grid_outcome_schema}.{grid_outcome_table}rel"
            .format(**options))
        truncate_table(
            "{grid_outcome_schema}.{grid_outcome_table}rel".format(**options))
        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(
            self.config_entity,
            self.config_entity.computed_db_entities(
                key=DbEntityKey.PH_GRID_OUTCOMES)[0])
    def run_analysis(self, **kwargs):

        start_time = time.time()
        self.report_progress(0.1, **kwargs)

        self.climate_zone_class = self.config_entity.db_entity_feature_class(DbEntityKey.CLIMATE_ZONES)
        self.energy_class = self.config_entity.db_entity_feature_class(DbEntityKey.ENERGY)
        self.base_class = self.config_entity.db_entity_feature_class(DbEntityKey.BASE_CANVAS)
        self.rel_table = parse_schema_and_table(self.energy_class._meta.db_table)[1]
        self.rel_column = self.energy_class._meta.parents.values()[0].column

        options = dict(
            energy_result_table=self.energy_class.db_entity_key,
            energy_schema=parse_schema_and_table(self.energy_class._meta.db_table)[0],
            base_table=self.base_class.db_entity_key,
            base_schema=parse_schema_and_table(self.base_class._meta.db_table)[0],
        )
        logger.info("Running Energy Updater Tool with options %s" % options)

        if isinstance(self.config_entity.subclassed, FutureScenario):
            self.end_state_class = self.config_entity.db_entity_feature_class(DbEntityKey.END_STATE)
            logger.info("Running Future Calculations")
            energy_output_list, options = self.run_future_calculations(options, **kwargs)
        else:
            logger.info("Running Base Calculations")
            energy_output_list, options = self.run_base_calculations(options, **kwargs)

        logger.info("Writing to feature table {energy_schema}.{energy_result_table}".format(**options))
        self.write_results_to_database(options, energy_output_list)


        logger.info("Writing to relative table {energy_schema}.{rel_table}".format(
            energy_schema=options['energy_schema'],
            rel_table=self.rel_table))

        updated = datetime.datetime.now()
        truncate_table(options['energy_schema'] + '.' + self.rel_table)

        pSql = '''
        insert into {energy_schema}.{rel_table} ({rel_column}, updated)
        select id, '{updated}' from {energy_schema}.{energy_result_table};'''.format(
            energy_schema=options['energy_schema'],
            energy_result_table=options['energy_result_table'],
            rel_table=self.rel_table,
            rel_column=self.rel_column,
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(self.config_entity, self.config_entity.computed_db_entities(key=DbEntityKey.ENERGY)[0])
        self.report_progress(0.2, **kwargs)

        logger.info('Finished: ' + str(time.time() - start_time))
Example #6
0
    def run_analysis(self, **kwargs):

        start_time = time.time()
        self.report_progress(0.1, **kwargs)

        self.climate_zone_class = self.config_entity.db_entity_feature_class(DbEntityKey.CLIMATE_ZONES)
        self.energy_class = self.config_entity.db_entity_feature_class(DbEntityKey.ENERGY)
        self.base_class = self.config_entity.db_entity_feature_class(DbEntityKey.BASE_CANVAS)
        self.rel_table = parse_schema_and_table(self.energy_class._meta.db_table)[1]
        self.rel_column = self.energy_class._meta.parents.values()[0].column

        options = dict(
            energy_result_table=self.energy_class.db_entity_key,
            energy_schema=parse_schema_and_table(self.energy_class._meta.db_table)[0],
            base_table=self.base_class.db_entity_key,
            base_schema=parse_schema_and_table(self.base_class._meta.db_table)[0],
        )
        logger.info("Running Energy Updater Tool with options %s" % options)

        if isinstance(self.config_entity.subclassed, FutureScenario):
            self.end_state_class = self.config_entity.db_entity_feature_class(DbEntityKey.END_STATE)
            logger.info("Running Future Calculations")
            energy_output_list, options = self.run_future_calculations(options, **kwargs)
        else:
            logger.info("Running Base Calculations")
            energy_output_list, options = self.run_base_calculations(options, **kwargs)

        logger.info("Writing to feature table {energy_schema}.{energy_result_table}".format(**options))
        self.write_results_to_database(options, energy_output_list)


        logger.info("Writing to relative table {energy_schema}.{rel_table}".format(
            energy_schema=options['energy_schema'],
            rel_table=self.rel_table))

        updated = datetime.datetime.now()
        truncate_table(options['energy_schema'] + '.' + self.rel_table)

        pSql = '''
        insert into {energy_schema}.{rel_table} ({rel_column}, updated)
        select id, '{updated}' from {energy_schema}.{energy_result_table};'''.format(
            energy_schema=options['energy_schema'],
            energy_result_table=options['energy_result_table'],
            rel_table=self.rel_table,
            rel_column=self.rel_column,
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(self.config_entity, self.config_entity.computed_db_entities(key=DbEntityKey.ENERGY)[0])
        self.report_progress(0.2, **kwargs)

        logger.info('Finished: ' + str(time.time() - start_time))
Example #7
0
    def write_results_to_database(self, options, public_health_output_list):

        drop_table('{grid_outcome_schema}.{grid_outcome_table}'.format(**options))

        attribute_list = filter(lambda x: x != 'id', self.outcome_fields)
        options['output_field_syntax'] = 'id int, ' + \
                                         create_sql_calculations(attribute_list, '{0} numeric(20,8)')

        execute_sql("create table {grid_outcome_schema}.{grid_outcome_table} ({output_field_syntax});".format(
            **options))

        output_textfile = StringIO("")
        for row in public_health_output_list:
            stringrow = []
            for item in row:
                if isinstance(item, int):
                    stringrow.append(str(item))
                else:
                    stringrow.append(str(round(item, 8)))
            output_textfile.write("\t".join(stringrow) + "\n")

        output_textfile.seek(os.SEEK_SET)
        #copy text file output back into Postgres
        copy_from_text_to_db(output_textfile, '{grid_outcome_schema}.{grid_outcome_table}'.format(**options))
        output_textfile.close()
        ##---------------------------
        pSql = '''alter table {grid_outcome_schema}.{grid_outcome_table}
                    add column wkb_geometry geometry (GEOMETRY, 4326);'''.format(**options)
        execute_sql(pSql)

        pSql = '''update {grid_outcome_schema}.{grid_outcome_table} b set
                    wkb_geometry = st_setSRID(a.wkb_geometry, 4326)
                    from (select id, wkb_geometry from {source_grid_schema}.{source_grid_table}) a
                    where cast(a.id as int) = cast(b.id as int);
        '''.format(**options)
        execute_sql(pSql)

        add_geom_idx(options['grid_outcome_schema'], options['grid_outcome_table'], 'wkb_geometry')
        add_primary_key(options['grid_outcome_schema'], options['grid_outcome_table'],  'id')

        # Since not every grid cell results in a grid_outcome, we need to wipe out the rel
        # table and recreate it to match the base grid_coutcome table. Otherwise there will
        # be to many rel table rows and cloning the DbEntity or ConfigEntity will fail
        logger.info("Writing to relative table {grid_outcome_schema}.{grid_outcome_table}rel".format(**options))
        truncate_table("{grid_outcome_schema}.{grid_outcome_table}rel".format(**options))
        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(
            self.config_entity,
            self.config_entity.computed_db_entities(key=DbEntityKey.PH_GRID_OUTCOMES)[0])
    def run_water_calculations(self, **kwargs):
        self.format_policy_inputs()

        self.water_class = self.config_entity.db_entity_feature_class(
            DbEntityKey.WATER)
        self.base_class = self.config_entity.db_entity_feature_class(
            DbEntityKey.BASE_CANVAS)
        self.climate_zone_class = self.config_entity.db_entity_feature_class(
            DbEntityKey.CLIMATE_ZONES)
        self.rel_table = parse_schema_and_table(
            self.water_class._meta.db_table)[1]
        self.rel_column = self.water_class._meta.parents.values()[0].column

        if isinstance(self.config_entity.subclassed, FutureScenario):
            self.report_progress(0.2, **kwargs)
            self.end_state_class = self.config_entity.db_entity_feature_class(
                DbEntityKey.END_STATE)

            water_output_list, options = self.run_future_water_calculations(
                **kwargs)
        else:
            self.report_progress(0.2, **kwargs)
            water_output_list, options = self.run_base_water_calculations()
            self.report_progress(0.7, **kwargs)

        self.write_water_results_to_database(options, water_output_list)

        updated = datetime.datetime.now()
        truncate_table(options['water_schema'] + '.' + self.rel_table)

        pSql = '''
        insert into {water_schema}.{rel_table} ({rel_column}, updated) select id, '{updated}' from {water_schema}.{water_result_table};'''.format(
            water_schema=options['water_schema'],
            water_result_table=options['water_result_table'],
            rel_table=self.rel_table,
            rel_column=self.rel_column,
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(
            self.config_entity,
            self.config_entity.computed_db_entities(key=DbEntityKey.WATER)[0])
        self.report_progress(0.10000001, **kwargs)
Example #9
0
    def run_water_calculations(self, **kwargs):
        self.format_policy_inputs()

        self.water_class = self.config_entity.db_entity_feature_class(DbEntityKey.WATER)
        self.base_class = self.config_entity.db_entity_feature_class(DbEntityKey.BASE_CANVAS)
        self.climate_zone_class = self.config_entity.db_entity_feature_class(DbEntityKey.CLIMATE_ZONES)
        self.rel_table = parse_schema_and_table(self.water_class._meta.db_table)[1]
        self.rel_column = self.water_class._meta.parents.values()[0].column

        if isinstance(self.config_entity.subclassed, FutureScenario):
            self.report_progress(0.2, **kwargs)
            self.end_state_class = self.config_entity.db_entity_feature_class(DbEntityKey.END_STATE)


            water_output_list, options = self.run_future_water_calculations(**kwargs)
        else:
            self.report_progress(0.2, **kwargs)
            water_output_list, options = self.run_base_water_calculations()
            self.report_progress(0.7, **kwargs)

        self.write_water_results_to_database(options, water_output_list)

        updated = datetime.datetime.now()
        truncate_table(options['water_schema'] + '.' + self.rel_table)

        pSql = '''
        insert into {water_schema}.{rel_table} ({rel_column}, updated) select id, '{updated}' from {water_schema}.{water_result_table};'''.format(
            water_schema=options['water_schema'],
            water_result_table=options['water_result_table'],
            rel_table=self.rel_table,
            rel_column=self.rel_column,
            updated=updated)

        execute_sql(pSql)

        from footprint.main.publishing.data_import_publishing import create_and_populate_relations
        create_and_populate_relations(self.config_entity, self.config_entity.computed_db_entities(key=DbEntityKey.WATER)[0])
        self.report_progress(0.10000001, **kwargs)
    def importer(self, config_entity, db_entity, **kwargs):
        """
            Replaces the normal ImportProcessor importer with one to import a sql from disk
        """
        if InformationSchema.objects.table_exists(db_entity.schema, db_entity.table):
            # The table already exists. Skip the import an log a warning
            logger.warn("The target table for the feature table import already exists. Skipping table import.")
        else:
            # We don't store the upload_id alone, so pull it off the url
            upload_id = db_entity.url.replace('file:///tmp/', '').replace('.sql.zip', '')
            # Unpack the zipfile and return the path the sql file was placed at
            if db_entity.url.startswith('file://'):
                file_path = db_entity.url[len('file://'):]

            logger.warn(file_path)
            path = unpack_zipfile(file_path, upload_id)
            # The file is always the name of the table defined therein
            table_name = path.split('/')[-1].split('.')[0].lower()
            db_entity.url = 'file://%s' % path
            # Update the db_entity.url from the zip file url to the file_path
            # This lets ImportData find it.
            logger.info("Url of DbEntity is %s" % db_entity.url)
            db_entity.save()

            # Perform some sed updates to get the sql file ready for import
            regex_substitutions = []
            sql_file_path = file_url_to_path(db_entity.url)

            # Add IF EXISTS to the drop table to prevent an error if IF EXISTS doesn't exist yet
            regex_substitutions.append((r'DROP TABLE (?!IF EXISTS)', r'DROP TABLE IF EXISTS'))

            # TODO temp, fix an AC bug. It seems that using a capitalized column is problematic (?)
            # The suggested solution is to double quote it, but quotes cause other problems, so we simply lowercase
            regex_substitutions.append((r' OGC_FID ', ' ogc_fid ', (4, 4)))  # only line 4
            regex_substitutions.append((r'PRIMARY KEY \(ogc_fid\)', 'PRIMARY KEY (ogc_fid)', (4, 4)))  # only line 4
            # TODO end temp fix

            # Update the index name to include the schema. This format matches that created for preconfigured feature
            # tables (see import_data.py)
            spatial_index_name = '{schema}_{key}_geom_idx'.format(schema=db_entity.schema, key=db_entity.key)
            regex_substitutions.append((r'CREATE INDEX ".*" ON', 'CREATE INDEX "%s" ON' % spatial_index_name, (6, 6)))  # only line 6 6

            # Remove the reference to the geometry_columns, since we use a materialized view
            regex_substitutions.append((r'^DELETE FROM geometry_columns', '--DELETE FROM geometry_columns', (2, 2)))

            # Update the sql to have a unique table name which matches the DbEntity key
            # Also change public to our import schema to keep it from causing trouble in the public schema
            # Otherwise we run into all kinds of trouble trying to get the SQL into the system
            regex_substitutions.append((r'"public"."%s"' % table_name, '"import"."%s"' % db_entity.key))

            regex_substitutions.append((r"'%s'" % table_name, "'%s'" % db_entity.key, (2, 5)))

            regex_substitutions.append((r'"%s_pk"' % table_name, '"%s_pk"' % db_entity.key, (4, 4)))

            # Update public to the import schema
            regex_substitutions.append((r"AddGeometryColumn\('public'", "AddGeometryColumn('%s'" % settings.IMPORT_SCHEMA, (5, 5)))

            regex_substitutions.append((r'"%s_wkb_geometry_geom_idx"' % table_name, '"%s_wkb_geometry_geom_idx"' % db_entity.key, (6, 6)))

            for command in regex_substitutions:
                logger.info("Applying the following substitution %s" % ', '.join(command[0:2]))
            apply_regexes_to_file(sql_file_path, regex_substitutions)

            ImportData(config_entity=config_entity, db_entity_key=db_entity.key).run()

        # Add our normal primary key in the id column if negit eded
        add_primary_key_if_needed(db_entity)

        feature_class_creator = FeatureClassCreator(config_entity, db_entity)
        # Inspect the imported table to create the feature_class_configuration
        feature_class_configuration = feature_class_creator.feature_class_configuration_from_introspection()

        # Merge the created feature_class_configuration with the on already defined for the db_entity
        feature_class_creator.update_db_entity(feature_class_configuration)
        logger.info("Finished import for DbEntity: %s, feature_class_configuration: %s" % (db_entity, db_entity.feature_class_configuration))

        # Create association classes and tables and populate them with data
        create_and_populate_relations(config_entity, feature_class_creator.db_entity)