def rseval(rsdata, pdata, cdata, rstypes): # rsdata: SampleData containing the RS training data # pdata: SampleData containing the sample representing the prior over uncertain variables # cdata: SampleData containing the candidate set # rstypes: dictionary with output index as key and string denote RS types as value; possible values: ['MARS', # 'linear', 'quadratic', 'cubic'] # convert the data into psuade files cfile = os.path.join(dname, 'CandidateSet') pfile = os.path.join(dname, 'PriorSample') rsfile = os.path.join(dname, 'RSTrainData') cfile = writeSample(cfile, cdata) pfile = writeSample(pfile, pdata) y = 1 rsfile = RSAnalyzer.writeRSdata(rsfile, y, rsdata) cmd = 'odoeu_rseval' inputNames = rsdata.getInputNames() priorNames = pdata.getInputNames() priorIndices = [] for name in priorNames: priorIndices.append(inputNames.index(name) + 1) rs_list = ['MARS', 'linear', 'quadratic', 'cubic', 'GP3'] # extract the indices of RS types for outputs rs_idx = [ResponseSurfaces.getEnumValue(s) for s in rs_list] rsdict = dict(zip(rs_list, rs_idx)) # write script f = tempfile.SpooledTemporaryFile(mode='wt') if platform.system() == 'Windows': import win32api cfile = win32api.GetShortPathName(cfile) pfile = win32api.GetShortPathName(pfile) rsfile = win32api.GetShortPathName(rsfile) f.write('load %s\n' % rsfile) f.write('%s\n' % cmd) f.write('y\n') for i in priorIndices: f.write( '%d\n' % i ) # specify random variables, should be consistent with vars in prior f.write('0\n') # 0 to proceed f.write('%s\n' % pfile) # file containing the prior sample (psuade sample format) f.write('%s\n' % cfile) # file containing the candidate set (psuade sample format) for rs in rstypes: # for each output, specify RS index f.write('%d\n' % rsdict[rstypes[rs]]) f.write('quit\n') f.seek(0) # invoke psuade out, error = Common.invokePsuade(f) if error: return None outfile = 'odoeu_rseval.out' assert (os.path.exists(outfile)) return outfile
def writeSample(fname, data): xdat = data.getInputData() RSAnalyzer.writeRSsample(fname, xdat, row=True) return fname
def writescript(vartypes, fnameOUU, outputsAsConstraint, phi=None, x3sample=None, x4sample=None, useRS=False, useBobyqa=False, useEnsOptDriver=None): M1 = vartypes.count(1) M2 = vartypes.count(2) M3 = vartypes.count(3) M4 = vartypes.count(4) nInputs = M1 + M2 + M3 + M4 # write script #f = open('ouu.in','w') f = tempfile.SpooledTemporaryFile() if platform.system() == 'Windows': import win32api fnameOUU = win32api.GetShortPathName(fnameOUU) f.write('run %s\n' % fnameOUU) f.write('y\n') # ready to proceed # ... partition variables f.write('%d\n' % M1) # number of design opt variables if M1 == nInputs: f.write('quit\n') f.seek(0) return f # ________ M1 < nInputs ________ f.write('%d\n' % M2) # number of operating opt variables if M1 + M2 == nInputs: for i in xrange(nInputs): f.write('%d\n' % vartypes[i]) if useBobyqa: f.write('n\n') # use BOBYQA means 'no' to use own driver else: f.write('y\n') # use own driver as optimizer f.write('quit\n') f.seek(0) return f # ________ M1+M2 < nInputs ________ f.write('%d\n' % M3) # number of discrete UQ variables for i in xrange(nInputs): f.write('%d\n' % vartypes[i]) # ... set objective function w.r.t. to uncertainty ftype = phi['type'] f.write('%d\n' % ftype) # optimization objective w.r.t. UQ variables if ftype == 2: beta = max(0, phi['beta']) # beta >= 0 f.write('%f\n' % beta) elif ftype == 3: alpha = phi['alpha'] alpha = min(max(alpha, 0.5), 1.0) # 0.05 <= alpha <= 1.0 f.write('%f\n' % alpha) if outputsAsConstraint.count(True) > 0: f.write('1\n') # ... get sample for discrete UQ variables # The file format should be: # line 1: <nSamples> <nInputs> # line 2: <sample 1 input 1> <input 2> ... <probability> # line 3: <sample 2 input 1> <input 2> ... <probability> if M3 > 0: if platform.system() == 'Windows': import win32api x3sample['file'] = win32api.GetShortPathName(x3sample['file']) f.write('%s\n' % x3sample['file']) # sample file for discrete UQ variables # ... get sample for continuous UQ variables # The file format should be: # line 1: <nSamples> <nInputs> # line 2: <sample 1 input 1> <input 2> ... # line 3: <sample 2 input 1> <input 2> ... # ..... # line N: <sample N input 1> <input 2> ... if M4 > 0: loadcs = 'file' in x4sample if loadcs: if platform.system() == 'Windows': import win32api x4sample['file'] = win32api.GetShortPathName( x4sample['file']) f.write('1\n') # load samples for continuous UQ vars f.write('%s\n' % x4sample['file']) # sample file for continuous UQ vars else: f.write('2\n') # generate samples for continuous UQ variables # ... apply response surface if useRS: f.write('y\n') # use response surface if loadcs: Nrs = x4sample['nsamplesRS'] f.write( '%d\n' % Nrs ) # number of points to build RS (range: [M4+1,N] where N=samplesize) randsample = True # set to False to pass in subsample based on convex hull analysis # set to True to use psuade's built-in random sampler if randsample: f.write('2\n') # 2 to generate random sample else: f.write('1\n') # 1 to upload subsample file x, y = RSAnalyzer.readRSsample(x4sample['file']) xsub = OUU.subsample(x, Nrs) dname = OUU.dname if platform.system() == 'Windows': import win32api dname = win32api.GetShortPathName(dname) x4subsample = Common.getLocalFileName( dname, x4sample['file'], '.subsample') RSAnalyzer.writeRSsample(x4subsample, xsub) f.write( '%s\n' % x4subsample ) # subsample file containing subset of original points else: f.write('n\n') # do not use response surface # ... # create samples for continuous UQ variables if not loadcs: Nmin = M4 + 1 if x4sample['method'] == SamplingMethods.LH: f.write('1\n') # sampling scheme: Latin Hypercube nSamples = x4sample['nsamples'] nSamples = min(max(nSamples, Nmin), 1000) f.write('%d\n' % nSamples) # number of samples (range: [M4+1,1000]) elif x4sample['method'] == SamplingMethods.FACT: f.write('2\n') # sampling scheme: Factorial nlevels = x4sample['nlevels'] nlevels = min(max(nlevels, 3), 100) f.write('%d\n' % nlevels ) # number of levels per variable (range: [3,100]) elif x4sample['method'] == SamplingMethods.LPTAU: f.write('3\n') # sampling scheme: Quasi Monte Carlo nSamples = x4sample['nsamples'] nSamples = min(max(nSamples, Nmin), 1000) f.write('%d\n' % nSamples) # number of samples (range: [M4+1,1000]) # ... choose optimizer if M2 > 0: #if useBobyqa: # f.write('n\n') # use BOBYQA #else: # f.write('y\n') # use own driver as optimizer f.write('y\n') # use own driver as optimizer # ... choose ensemble optimization driver if M3 + M4 > 0: #and not useBobyqa: if useEnsOptDriver: f.write('y\n') # use ensemble driver else: f.write('n\n') # ... choose mode to run simulations for computing statistics if M3 + M4 > 0: f.write('n\n') # do not use asynchronous mode (not tested) f.write('quit\n') f.seek(0) #for line in f: # print line.strip() #f.seek(0) return f
def odoeu(cdata, cfile, pdata, rsdata, rstypes, opt, nd, max_iters=100, edata=None): # cdata: SampleData containing the original candidate set # cfile: PSUADE sample file containing the original candidates with the mean/std of the selected output # cdata: SampleData containing the candidate set # pdata: SampleData containing the sample representing the prior over uncertain variables # rsdata: SampleData containing the RS training data # rstypes: dictionary with output index as key and string denote RS types as value; possible values: ['MARS', # 'linear', 'quadratic', 'cubic'] # nd: int denoting design size # max_iters: int denoting maximum number of iterations for the optimization routine [default: 100] # edata: SampleData containing the evaluation set # parse params opts = ['G', 'I', 'D', 'A'] assert (opt in opts) optdict = dict(zip(opts, range(1, len(opts) + 1))) opt_index = optdict[opt] cmd = 'odoeu_optns' # TO DO for Pedro: check in GUI? # maximum iterations should be in range [100, 1000] assert (99 < max_iters < 1001) # initialize constants ncand = cdata.getNumSamples() nOutputs = rsdata.getNumOutputs() # extract the indices of random variables inputNames = rsdata.getInputNames() priorNames = pdata.getInputNames() priorIndices = [] for name in priorNames: priorIndices.append(inputNames.index(name) + 1) rs_list = ['MARS', 'linear', 'quadratic', 'cubic', 'GP3'] # TO DO for Pedro: check in GUI? # this checks to see if user is trying to pass an unsupported RS for rs in rstypes: assert (rstypes[rs] in rs_list) assert (len(rstypes) == nOutputs) # extract the indices of RS types for outputs rs_idx = [ResponseSurfaces.getEnumValue(s) for s in rs_list] rsdict = dict(zip(rs_list, rs_idx)) # convert the data into psuade files pfile = os.path.join(dname, 'PriorSample') rsfile = os.path.join(dname, 'RSTrainData') pfile = writeSample(pfile, pdata) efile = os.path.join(dname, 'EvaluationSet') if edata is None: efile = writeSample(efile, cdata) else: efile = writeSample(efile, edata) y = 1 rsfile = RSAnalyzer.writeRSdata(rsfile, y, rsdata) # write script f = tempfile.SpooledTemporaryFile(mode='wt') if platform.system() == 'Windows': import win32api pfile = win32api.GetShortPathName(pfile) rsfile = win32api.GetShortPathName(rsfile) efile = win32api.GetShortPathName(efile) f.write('%s\n' % cmd) f.write('y\n') f.write('%d\n' % opt_index) # choose G, I, D, A f.write('%d\n' % ncand) # size of the candidate set f.write('%d\n' % nd) # design size f.write( '%d\n' % max_iters) # max number of iterations, must be greater or equal to 100 f.write('n\n') # no initial guess f.write('%s\n' % rsfile) # file containing RS training data (psuade format) for i in priorIndices: f.write( '%d\n' % i ) # specify random variables, should be consistent with vars in prior f.write('0\n') # 0 to proceed f.write('%s\n' % pfile) # file containing the prior sample (psuade sample format) f.write('%s\n' % cfile) # file containing the candidate set (psuade sample format) f.write('%s\n' % efile ) # ... evaluate the optimality values on the (same) candidate set for rs in rstypes: # for each output, specify RS index f.write('%d\n' % rsdict[rstypes[rs]]) # TO DO: as we add more RS, may need to port more code from RSAnalyzer.py to handle different RS types f.write('quit\n') f.seek(0) # invoke psuade out, error = Common.invokePsuade(f) if error: return None # parse output best_indices = None best_optval = None m = re.findall(cmd + r' best selection = (\d+ \d+)', out) if m: best_indices = [i for i in m[0].split()] s = r'\s*'.join([i for i in best_indices]) best_optvals = re.findall(s + r'\s*===> output = (\S*)', out) best_indices = [int(i) for i in best_indices] best_optval = float(best_optvals[0]) return best_indices, best_optval
def ouu(self, fname, y, outputsAsConstraint, outputsAsDerivative, xtable, phi, x3sample=None, x4sample=None, useRS=False, useBobyqa=True, driver=None, optDriver=None, auxDriver=None, ensOptDriver=None, plotSignal=None, endFunction=None): # Function to execute after inference has finished. # Function would enable button again and such things. self.endFunction = endFunction # read data, assumes data already have fixed variables written to file data = LocalExecutionModule.readSampleFromPsuadeFile(fname) if optDriver == None and ensOptDriver == None and \ data.getOptDriverName() == None and \ data.getEnsembleOptDriverName() == None: Common.showError('Model file does not have any drivers set!', \ showDeveloperHelpMessage = False) self.hadError = True if endFunction is not None: endFunction() return if driver != None: data.setDriverName(driver) if optDriver != None: data.setOptDriverName(optDriver) if auxDriver != None: data.setAuxDriverName(auxDriver) if ensOptDriver != None: data.setEnsembleOptDriverName(ensOptDriver) else: ensOptDriver = data.getEnsembleOptDriverName() # Remove file that tells OUU to stop if os.path.exists(OUU.stopFile): os.remove(OUU.stopFile) # process input table dname = OUU.dname deleteFiles = True if x3sample is not None: deleteFiles = not x3sample['file'].startswith(dname) #Common.initFolder(dname, deleteFiles = deleteFiles) if platform.system() == 'Windows': import win32api dname = win32api.GetShortPathName(dname) fnameOUU = Common.getLocalFileName(dname, fname, '.ouudat') p = RSAnalyzer.parsePrior(data, xtable) if p is not None: inputLB = p['inputLB'] inputUB = p['inputUB'] dist = p['dist'] init_input = [] vartypes = [] for e in xtable: t = e['type'] if t == u'Opt: Primary Continuous (Z1)': vartypes.append(1) elif t == u'Opt: Primary Continuous (Z1c)': vartypes.append(1) elif t == u'Opt: Primary Discrete (Z1d)': vartypes.append(1) elif t == u'Opt: Recourse (Z2)': vartypes.append(2) elif t == u'UQ: Discrete (Z3)': vartypes.append(3) elif t == u'UQ: Continuous (Z4)': vartypes.append(4) if t != u'Fixed': init_input.append(e['value']) M1 = vartypes.count(1) M2 = vartypes.count(2) M3 = vartypes.count(3) M4 = vartypes.count(4) # check arguments if M1 < 1: error = 'OUU: In function ouu(), number of Z1 (design opt) ' error = error + 'must be at least 1.' if M3 > 0: if x3sample == None: error = 'OUU: In function ouu(), "x3sample" is undefined.' Common.showError(error) return None if M4 > 0: if x4sample == None: error = 'OUU: In function ouu(), "x4sample" is undefined.' Common.showError(error) return None loadcs = 'file' in x4sample if loadcs: N = 0 # number of samples in x4sample['file'] ### TO DO for Jeremy: check sample size in GUI with open(x4sample['file']) as f: header = f.readline() header = header.split() N = int(header[0]) Nmin = M4 + 1 # minimum number of samples if N < Nmin: error = 'OUU: In function ouu(), "x4sample file" requires ' error = error + 'at least %d samples.' % Nmin Common.showError(error) return None if useRS: Nrs = 'nsamplesRS' in x4sample if not Nrs: error = 'OUU: In function ouu(), "x4sample nsamplesRS" is ' error = error + 'required for setting up response surface.' Common.showError(error) return None Nrs = x4sample['nsamplesRS'] Nrs = min(max(Nrs, Nmin), N) ### TO DO for Jeremy: check in GUI # TO DO: remove randSeed ouuFile = OUU.writeOUUdata(fnameOUU, y, outputsAsConstraint, outputsAsDerivative, data, xtable, randSeed=41491431, inputLowerBounds=inputLB, inputUpperBounds=inputUB, inputPDF=dist, useEnsOptDriver=(ensOptDriver != None), init_input=init_input) if (ouuFile == None): return None # write script f = OUU.writescript(vartypes, fnameOUU, outputsAsConstraint, phi, x3sample, x4sample, useRS, useBobyqa, useEnsOptDriver=(ensOptDriver != None)) # delete previous history file if os.path.exists(OUU.hfile): os.remove(OUU.hfile) self.textDialog = Common.textDialog() self.thread = psuadeThread(self, f, self.finishOUU, self.textDialog, plotSignal) self.thread.start()