Example #1
0
 def rmsd_to(self, other):
     import forgi.threedee.model.similarity as ftms  #This import is here to avoid circular imports.
     if self._elem_names == other._elem_names:
         return ftms.rmsd(self._coordinates, other._coordinates,
                          self.is_centered & other.is_centered)
     else:
         common_keys = set(self._elem_names.keys()) & set(
             other._elem_names.keys())
         if len(common_keys) == len(self._elem_names):
             rev_lookup = list(x for x in sorted(
                 self._elem_names.keys(), key=self._elem_names.__getitem__))
             other_array = np.array([
                 coord_line for d in rev_lookup
                 for coord_line in [other[d][0], other[d][1]]
             ])
             return ftms.rmsd(self._coordinates, other_array,
                              self.is_centered & other.is_centered)
         else:
             common_keys = list(common_keys)
             this_array = np.array([
                 coord_line for d in common_keys
                 for coord_line in [self[d][0], self[d][1]]
             ])
             other_array = np.array([
                 coord_line for d in common_keys
                 for coord_line in [other[d][0], other[d][1]]
             ])
             return ftms.rmsd(this_array, other_array, False)
Example #2
0
 def rmsd_to(self, other):
     # This import is here to avoid circular imports.
     import forgi.threedee.model.similarity as ftms
     if self._elem_names == other._elem_names:
         return ftms.rmsd(self._coordinates,
                          other._coordinates,
                          self.is_centered & other.is_centered)
     else:
         common_keys = set(self._elem_names.keys()) & set(
             other._elem_names.keys())
         if len(common_keys) == len(self._elem_names):
             rev_lookup = list(x for x in sorted(
                 self._elem_names.keys(), key=self._elem_names.__getitem__))
             other_array = np.array(
                 [coord_line for d in rev_lookup for coord_line in [other[d][0], other[d][1]]])
             return ftms.rmsd(self._coordinates,
                              other_array,
                              self.is_centered & other.is_centered)
         else:
             common_keys = list(common_keys)
             this_array = np.array(
                 [coord_line for d in common_keys for coord_line in [self[d][0], self[d][1]]])
             other_array = np.array(
                 [coord_line for d in common_keys for coord_line in [other[d][0], other[d][1]]])
             return ftms.rmsd(this_array,
                              other_array,
                              False)
Example #3
0
 def test_rmsd_to_same(self):
     a1 = np.array([[1., 1., 1.], [0., 0., 0.], [-1., -1., -1.]])
     a2 = np.array([[1., 2., 1.], [0., -1., 0.], [-1., -1., -1.]])
     self.assertAlmostEqual(ftme.drmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.drmsd(a2, a2), 0)
     self.assertAlmostEqual(ftme.rmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.rmsd(a2, a2), 0)
Example #4
0
 def test_rmsd_to_same(self):
     a1 = np.array([[1., 1., 1.], [0., 0., 0.], [-1., -1., -1.]])
     a2 = np.array([[1., 2., 1.], [0., -1., 0.], [-1., -1., -1.]])
     self.assertAlmostEqual(ftme.drmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.drmsd(a2, a2), 0)
     self.assertAlmostEqual(ftme.rmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.rmsd(a2, a2), 0)
Example #5
0
def realatom_vatom_rmsd(cg):
    """
    The RMSD between the real atoms and the virtual atoms of the stems.
    """
    vposs = []
    rposs = []

    for stem in cg.stem_iterator():
        stemv = []
        stemr = []
        resseqs = cg.get_resseqs(stem)
        resseqs = resseqs[0] + resseqs[1]
        for posCg, idPdb in zip(cg.define_residue_num_iterator(stem), resseqs):
            chainPdb, posPdb = idPdb
            vas = cg.virtual_atoms(posCg)
            for a, coords in vas.items():
                try:
                    rp = cg.chains[chainPdb][posPdb][a].get_vector(
                    ).get_array()
                except KeyError:
                    pass
                else:
                    rposs.append(rp)
                    vposs.append(coords)
    assert len(vposs) == len(rposs)
    return ftme.rmsd(np.array(vposs), np.array(rposs))
Example #6
0
def main(parser):
    args = parser.parse_args()

    with fuc.hide_traceback():
        cg1, cg2 = fuc.cgs_from_args(args,
                                     nargs=2,
                                     rna_type="3d",
                                     enable_logging=True)

    dir1 = np.array(args.directions[0].split(","), dtype=float)
    dir2 = np.array(args.directions[1].split(","), dtype=float)

    proj1 = ftmp.Projection2D(cg1, dir1)
    proj2 = ftmp.Projection2D(cg2, dir2)

    vrs1 = np.array(
        [x for p in sorted(proj1._coords.keys()) for x in proj1._coords[p]])
    vrs2 = np.array(
        [x for p in sorted(proj2._coords.keys()) for x in proj2._coords[p]])

    print(ftms.rmsd(vrs1, vrs2))
    if args.plot:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()
        proj1.plot(ax, line2dproperties={"color": "green"})
        proj2.plot(ax, line2dproperties={"color": "red"})
        plt.show()
Example #7
0
def realatom_vatom_rmsd(cg):
    """
    The RMSD between the real atoms and the virtual atoms of the stems.
    """
    vposs = []
    rposs = []

    for stem in cg.stem_iterator():
        stemv = []
        stemr = []
        resseqs = cg.get_resseqs(stem)
        resseqs = resseqs[0] + resseqs[1]
        for posCg, idPdb in zip(cg.define_residue_num_iterator(stem), resseqs):
            chainPdb, posPdb = idPdb
            vas = cg.virtual_atoms(posCg)
            for a, coords in vas.items():
                try:
                    rp = cg.chains[chainPdb][posPdb][a].get_vector().get_array(
                    )
                except KeyError:
                    pass
                else:
                    rposs.append(rp)
                    vposs.append(coords)
    assert len(vposs) == len(rposs)
    return ftme.rmsd(np.array(vposs), np.array(rposs))
 def update(self, sm, step):
     if not self.silent:
         curr_vress=sm.bg.get_ordered_virtual_residue_poss()
         if self.mode=="RMSD":
           rmsd=ftme.rmsd(self._reference, curr_vress)
         elif self.mode=="dRMSD":
           rmsd=ftme.drmsd(self._reference, curr_vress)
         if self.best_cgs.can_insert_right((None, rmsd)):
             self.best_cgs.insert_right((sm.bg.to_cg_string(),rmsd))
         if step % 10 == 0:
             for i, bg in enumerate(self.best_cgs):
                 with open(os.path.join(conf.Configuration.sampling_output_dir,
                           'best_rmsd{:d}.coord'.format(i)), 'w') as f:
                     f.write(bg[0])
         if self._showMinMax:
             if rmsd>self._maxRMSD:
                 self._maxRMSD=rmsd
             if self._showMinMax==True:
                 if rmsd<self._minRMSD:
                     self._minRMSD=rmsd
                 self.history[1].append( self._minRMSD )
             self.history[0].append( rmsd )
             self.history[-1].append( self._maxRMSD )
             if self._showMinMax=="max":
                   return "{:6.3f} A\t{:6.3f} A".format(rmsd, self._maxRMSD)
             else:
                 return "{:6.3f} A\t{:6.3f} A\t{:6.3f} A".format(rmsd, self._minRMSD, self._maxRMSD)
         else:
             self.history[0].append( rmsd )
             return "{:6.3f} A".format(rmsd)
     else:
         return
Example #9
0
def main(parser):
    args = parser.parse_args()

    with fuc.hide_traceback():
        cg1, cg2 = fuc.cgs_from_args(
            args, rna_type="3d", enable_logging=True)

    dir1 = np.array(args.directions[0].split(","), dtype=float)
    dir2 = np.array(args.directions[1].split(","), dtype=float)

    proj1 = ftmp.Projection2D(cg1, dir1)
    proj2 = ftmp.Projection2D(cg2, dir2)

    vrs1 = np.array([x for p in sorted(proj1._coords.keys())
                     for x in proj1._coords[p]])
    vrs2 = np.array([x for p in sorted(proj2._coords.keys())
                     for x in proj2._coords[p]])

    print(ftms.rmsd(vrs1, vrs2))
    if args.plot:
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots()
        proj1.plot(ax, line2dproperties={"color": "green"})
        proj2.plot(ax, line2dproperties={"color": "red"})
        plt.show()
Example #10
0
 def test_cg_rmsd(self):
     cg1 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA('test/forgi/threedee/data/1GID_A_sampled.cg')
     residues1 = ftug.bg_virtual_residues(cg1)
     residues2 = ftug.bg_virtual_residues(cg2)
     self.assertAlmostEqual(ftme.rmsd(residues1, residues2),
                            ftme.cg_rmsd(cg1, cg2))
Example #11
0
def realatom_vatom_rmsd(cg):
    """
    The RMSD between the real atoms and the virtual atoms of the stems.
    """
    vposs = []
    rposs = []
    #print(cg.seq)
    #print("".join(r.get_segid() for r in chain.get_residues()))
    #print(cg.seq[1], chain[2])
    for stem in cg.stem_iterator():
        stemv = []
        stemr = []
        resseqs = cg.get_resseqs(stem)
        resseqs = resseqs[0] + resseqs[1]
        for posCg, posPdb in zip(cg.define_residue_num_iterator(stem),
                                 resseqs):
            #try:
            #    print( posCg, posPdb, cg.seq[posCg-1], cg.chain[posPdb] )
            #except KeyError as e: print(e)
            vas = cg.virtual_atoms(posCg)
            for a, coords in vas.items():
                try:
                    rposs.append(cg.chain[posPdb][a].get_vector().get_array())
                    stemr.append(cg.chain[posPdb][a].get_vector().get_array())
                except KeyError:
                    pass
                else:
                    vposs.append(coords)
                    stemv.append(coords)
    assert len(vposs) == len(rposs)
    #print (np.array(vposs).shape, file=sys.stderr)
    return ftme.rmsd(np.array(vposs), np.array(rposs))
Example #12
0
 def test_cg_rmsd(self):
     cg1 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A.cg')
     cg2 = ftmc.CoarseGrainRNA.from_bg_file(
         'test/forgi/threedee/data/1GID_A_sampled.cg')
     cg1.add_all_virtual_residues()
     cg2.add_all_virtual_residues()
     residues1 = cg1.get_ordered_virtual_residue_poss()
     residues2 = cg2.get_ordered_virtual_residue_poss()
     self.assertAlmostEqual(
         ftme.rmsd(residues1, residues2), ftme.cg_rmsd(cg1, cg2))
Example #13
0
def main(parser):
    args = parser.parse_args()

    cg1 = ftmc.CoarseGrainRNA(args.files[0])
    cg2 = ftmc.CoarseGrainRNA(args.files[1])

    dir1 = np.array(args.directions[0].split(","), dtype=float)
    dir2 = np.array(args.directions[1].split(","), dtype=float)

    proj1 = ftmp.Projection2D(cg1, dir1)
    proj2 = ftmp.Projection2D(cg2, dir2)

    vrs1 = np.array([x for p in sorted(proj1._coords.keys()) for x in proj1._coords[p]])
    vrs2 = np.array([x for p in sorted(proj2._coords.keys()) for x in proj2._coords[p]])

    print ftms.rmsd(vrs1, vrs2)
    if args.plot:
        import matplotlib.pyplot as plt

        fig, ax = plt.subplots()
        proj1.plot(ax, line2dproperties={"color": "green"})
        proj2.plot(ax, line2dproperties={"color": "red"})
        plt.show()
Example #14
0
 def test_rmsd_in_2D(self):
     a1 = np.array([[1., 1.], [0., 0.], [-1., -1.]])
     a2 = np.array([[2., 2.], [0., 0.], [-2., -2.]])
     a3 = np.array([[2., 4.], [0., 6.], [-1., 0.]])
     self.assertAlmostEqual(ftme.rmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.rmsd(a2, a2), 0)
     self.assertAlmostEqual(ftme.rmsd(a3, a3), 0)
     self.assertAlmostEqual(ftme.rmsd(a1, a2), math.sqrt(4. / 3.))
     self.assertGreater(ftme.rmsd(a1, a3), ftme.rmsd(a1, a2))
Example #15
0
 def test_rmsd_in_2D(self):
     a1 = np.array([[1., 1.], [0., 0.], [-1., -1.]])
     a2 = np.array([[2., 2.], [0., 0.], [-2., -2.]])
     a3 = np.array([[2., 4.], [0., 6.], [-1., 0.]])
     self.assertAlmostEqual(ftme.rmsd(a1, a1), 0)
     self.assertAlmostEqual(ftme.rmsd(a2, a2), 0)
     self.assertAlmostEqual(ftme.rmsd(a3, a3), 0)
     self.assertAlmostEqual(ftme.rmsd(a1, a2), math.sqrt(4. / 3.))
     self.assertGreater(ftme.rmsd(a1, a3), ftme.rmsd(a1, a2))
def main(args):

    cgs = []
    projs = []
    for file_ in args.files:
        cgs.append(ftmc.CoarseGrainRNA(file_))
        try:
            projs.append(ftmp.Projection2D(cgs[-1]))
        except ValueError:
            projs.append(None)

    p_rmsds = OrderedDict()
    cg_rmsds = OrderedDict()
    p_rmsds[0] = 0.0
    cg_rmsds[0] = 0.0

    if "," in args.max_diff:
        diffs = map(int, args.max_diff.split(","))
    else:
        diffs = range(1, int(args.max_diff) + 1)
    for diff in diffs:
        print ("diff {}".format(diff))
        prmsd = 0
        cgrmsd = 0
        count = 0
        pcount = 0
        for i in range(0, len(cgs) - diff):
            count += 1
            try:
                vrs1 = np.array([x for p in sorted(projs[i]._coords.keys()) for x in projs[i]._coords[p]])
                vrs2 = np.array([x for p in sorted(projs[i + diff]._coords.keys()) for x in projs[i + diff]._coords[p]])
                prmsd += ftms.rmsd(vrs1, vrs2)
                pcount += 1
            except:
                pass
            cgrmsd += ftms.cg_rmsd(cgs[i], cgs[i + diff])
        if count:
            cg_rmsds[diff] = cgrmsd / count
        if pcount:
            p_rmsds[diff] = prmsd / pcount
    print "projection RMSDs:", p_rmsds
    print "3D-RMSDs:", cg_rmsds
    import matplotlib.pyplot as plt

    if args.target_structure and args.hausdorff_reference:
        fig, (ax, axT, axH) = plt.subplots(3)
    elif args.target_structure:
        fig, (ax, axT) = plt.subplots(2)
    elif args.hausdorff_reference:
        fig, (ax, axH) = plt.subplots(2)
    else:
        fig, ax = plt.subplots()

    if args.target_structure:
        target = ftmc.CoarseGrainRNA(args.target_structure)
        target_rmsds = []
        target_proj_rmsds = []
        try:
            target_proj = ftmp.Projection2D(target)
        except ValueError:
            pass
        else:
            target_vrs = np.array([x for p in sorted(target_proj._coords.keys()) for x in target_proj._coords[p]])
            for proj in projs:
                try:
                    vrs1 = np.array([x for p in sorted(proj._coords.keys()) for x in proj._coords[p]])
                    prmsd = ftms.rmsd(vrs1, target_vrs)
                    target_proj_rmsds.append(prmsd)
                except:
                    target_proj_rmsds.append(float("nan"))
        target_vrs = ftug.bg_virtual_residues(target)
        for cg in cgs:
            vrs1 = ftug.bg_virtual_residues(cg)
            cgrmsd = ftms.rmsd(vrs1, target_vrs)
            target_rmsds.append(cgrmsd)
        xval = np.arange(len(cgs)) * args.step_size
        if target_proj_rmsds:
            axT.plot(xval, target_proj_rmsds, label="Projection", color="green")
        axT.plot(xval, target_rmsds, label="3D", color="blue")
        axT.set_title("RMSD to target structure")
        axT.set_xlabel("step")
        axT.set_ylabel("RMSD")
        leg = axT.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)
    if args.hausdorff_reference:
        ref_img = scipy.ndimage.imread(args.hausdorff_reference)
        ref_quarter = scipy.ndimage.zoom(ref_img, 0.3) > 150
        degrees = get_refimg_longest_axis(ref_img)
        global_optima = []
        local_optima = []
        for cg in cgs:
            score, img, params = fph.try_parameters(ref_img, args.hausdorff_scale, cg, degrees)
            local_optima.append(score)
            s, i, params = fph.globally_minimal_distance(
                ref_quarter, args.hausdorff_scale, cg, start_points=40, starting_rotations=degrees, virtual_atoms=False
            )
            score, img, params = fph.locally_minimal_distance(
                ref_img, args.hausdorff_scale, cg, params[1], params[2], params[0], maxiter=200
            )
            global_optima.append(score)

        axH.plot(xval, global_optima, label="Global Minimization", color="red")
        axH.plot(xval, local_optima, label="Local Minimization", color="lavender")
        axH.set_title("Hausdorff Distance to reference image")
        axH.set_xlabel("step")
        axH.set_ylabel("Hausdorff Distance")
        leg = axH.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)

    p_rmsds = np.array(p_rmsds.items())
    cg_rmsds = np.array(cg_rmsds.items())
    ax.plot(p_rmsds[:, 0] * args.step_size, p_rmsds[:, 1], label="Projection", color="green", marker="o")
    ax.plot(cg_rmsds[:, 0] * args.step_size, cg_rmsds[:, 1], label="3D", color="blue", marker="o")
    ax.set_title("Average RMSD between structures X steps apart.")
    ax.set_xlabel("steps apart")
    ax.set_ylabel("RMSD")
    leg = ax.legend(framealpha=0.8, fancybox=True)
    leg.get_frame().set_linewidth(0.0)
    fig.patch.set_facecolor("white")
    if args.save_fig:
        with open(args.save_fig, "w") as f:
            pickle.dump(fig, f)
    plt.show()
Example #17
0
 def update(self, sm, step):
     if not self.silent:
         if self.res_ids:
             curr_vress = []
             for res in self.res_ids:
                 curr_vress.append(
                     sm.bg.get_virtual_residue(res,
                                               allow_single_stranded=True))
             curr_vress = np.array(curr_vress)
         else:
             curr_vress = sm.bg.get_ordered_virtual_residue_poss()
         if self.mode == "RMSD":
             try:
                 rmsd = ftme.rmsd(self._reference, curr_vress)
             except Exception as e:
                 self.res_ids = set(self.reference_cg.seq._seqids) & set(
                     sm.bg.seq._seqids)
                 self._reference = []
                 curr_vress = []
                 for res in self.res_ids:
                     curr_vress.append(
                         sm.bg.get_virtual_residue(
                             res, allow_single_stranded=True))
                     self._reference.append(
                         self.reference_cg.get_virtual_residue(
                             res, allow_single_stranded=True))
                 curr_vress = np.array(curr_vress)
                 self._reference = np.array(self._reference)
                 log.error("Calculating rmsd between %s and %s",
                           self._reference, curr_vress)
                 rmsd = ftme.rmsd(self._reference, curr_vress)
         elif self.mode == "dRMSD":
             rmsd = ftme.drmsd(self._reference, curr_vress)
         if self.best_cgs.can_insert_right((None, rmsd)):
             self.best_cgs.insert_right((sm.bg.to_cg_string(), rmsd))
         if step % 10 == 0:
             for i, bg in enumerate(self.best_cgs):
                 with open(
                         os.path.join(
                             conf.Configuration.sampling_output_dir,
                             'best_rmsd{:d}.coord'.format(i)), 'w') as f:
                     f.write(bg[0])
         if self._showMinMax:
             if rmsd > self._maxRMSD:
                 self._maxRMSD = rmsd
             if self._showMinMax == True:
                 if rmsd < self._minRMSD:
                     self._minRMSD = rmsd
                 self.history[1].append(self._minRMSD)
             self.history[0].append(rmsd)
             self.history[-1].append(self._maxRMSD)
             if self._showMinMax == "max":
                 return "{:6.3f} A\t{:6.3f} A".format(rmsd, self._maxRMSD)
             else:
                 return "{:6.3f} A\t{:6.3f} A\t{:6.3f} A".format(
                     rmsd, self._minRMSD, self._maxRMSD)
         else:
             self.history[0].append(rmsd)
             return "{:6.3f} A".format(rmsd)
     else:
         return
Example #18
0
def main(args):

    cgs = []
    projs = []
    for file_ in args.files:
        cgs.append(ftmc.CoarseGrainRNA(file_))
        try:
            projs.append(ftmp.Projection2D(cgs[-1]))
        except ValueError:
            projs.append(None)

    p_rmsds = OrderedDict()
    cg_rmsds = OrderedDict()
    p_rmsds[0] = 0.
    cg_rmsds[0] = 0.

    if "," in args.max_diff:
        diffs = map(int, args.max_diff.split(","))
    else:
        diffs = range(1, int(args.max_diff) + 1)
    for diff in diffs:
        print("diff {}".format(diff))
        prmsd = 0
        cgrmsd = 0
        count = 0
        pcount = 0
        for i in range(0, len(cgs) - diff):
            count += 1
            try:
                vrs1 = np.array([
                    x for p in sorted(projs[i]._coords.keys())
                    for x in projs[i]._coords[p]
                ])
                vrs2 = np.array([
                    x for p in sorted(projs[i + diff]._coords.keys())
                    for x in projs[i + diff]._coords[p]
                ])
                prmsd += ftms.rmsd(vrs1, vrs2)
                pcount += 1
            except:
                pass
            cgrmsd += ftms.cg_rmsd(cgs[i], cgs[i + diff])
        if count:
            cg_rmsds[diff] = cgrmsd / count
        if pcount:
            p_rmsds[diff] = prmsd / pcount
    print("projection RMSDs:", p_rmsds)
    print("3D-RMSDs:", cg_rmsds)
    import matplotlib.pyplot as plt
    if args.target_structure and args.hausdorff_reference:
        fig, (ax, axT, axH) = plt.subplots(3)
    elif args.target_structure:
        fig, (ax, axT) = plt.subplots(2)
    elif args.hausdorff_reference:
        fig, (ax, axH) = plt.subplots(2)
    else:
        fig, ax = plt.subplots()

    if args.target_structure:
        target = ftmc.CoarseGrainRNA(args.target_structure)
        target_rmsds = []
        target_proj_rmsds = []
        try:
            target_proj = ftmp.Projection2D(target)
        except ValueError:
            pass
        else:
            target_vrs = np.array([
                x for p in sorted(target_proj._coords.keys())
                for x in target_proj._coords[p]
            ])
            for proj in projs:
                try:
                    vrs1 = np.array([
                        x for p in sorted(proj._coords.keys())
                        for x in proj._coords[p]
                    ])
                    prmsd = ftms.rmsd(vrs1, target_vrs)
                    target_proj_rmsds.append(prmsd)
                except:
                    target_proj_rmsds.append(float("nan"))
        target_vrs = target.get_ordered_virtual_residue_poss()
        for cg in cgs:
            vrs1 = cg.get_ordered_virtual_residue_poss()
            cgrmsd = ftms.rmsd(vrs1, target_vrs)
            target_rmsds.append(cgrmsd)
        xval = np.arange(len(cgs)) * args.step_size
        if target_proj_rmsds:
            axT.plot(xval,
                     target_proj_rmsds,
                     label="Projection",
                     color="green")
        axT.plot(xval, target_rmsds, label="3D", color="blue")
        axT.set_title("RMSD to target structure")
        axT.set_xlabel("step")
        axT.set_ylabel("RMSD")
        leg = axT.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)
    if args.hausdorff_reference:
        ref_img = scipy.ndimage.imread(args.hausdorff_reference)
        ref_quarter = (scipy.ndimage.zoom(ref_img, 0.3) > 150)
        degrees = get_refimg_longest_axis(ref_img)
        global_optima = []
        local_optima = []
        for cg in cgs:
            score, img, params = fph.try_parameters(ref_img,
                                                    args.hausdorff_scale, cg,
                                                    degrees)
            local_optima.append(score)
            s, i, params = fph.globally_minimal_distance(
                ref_quarter,
                args.hausdorff_scale,
                cg,
                start_points=40,
                starting_rotations=degrees,
                virtual_atoms=False)
            score, img, params = fph.locally_minimal_distance(
                ref_img,
                args.hausdorff_scale,
                cg,
                params[1],
                params[2],
                params[0],
                maxiter=200)
            global_optima.append(score)

        axH.plot(xval, global_optima, label="Global Minimization", color="red")
        axH.plot(xval,
                 local_optima,
                 label="Local Minimization",
                 color="lavender")
        axH.set_title("Hausdorff Distance to reference image")
        axH.set_xlabel("step")
        axH.set_ylabel("Hausdorff Distance")
        leg = axH.legend(framealpha=0.8, fancybox=True)
        leg.get_frame().set_linewidth(0.0)
        plt.subplots_adjust(hspace=0.4)

    p_rmsds = np.array(list(p_rmsds.items()))
    cg_rmsds = np.array(list(cg_rmsds.items()))
    ax.plot(p_rmsds[:, 0] * args.step_size,
            p_rmsds[:, 1],
            label="Projection",
            color="green",
            marker="o")
    ax.plot(cg_rmsds[:, 0] * args.step_size,
            cg_rmsds[:, 1],
            label="3D",
            color="blue",
            marker="o")
    ax.set_title("Average RMSD between structures X steps apart.")
    ax.set_xlabel("steps apart")
    ax.set_ylabel("RMSD")
    leg = ax.legend(framealpha=0.8, fancybox=True)
    leg.get_frame().set_linewidth(0.0)
    fig.patch.set_facecolor('white')
    if args.save_fig:
        with open(args.save_fig, "w") as f:
            pickle.dump(fig, f)
    plt.show()
Example #19
0
 def test_rmsd(self):
     a1 = np.array([[1., 1., 1.], [0., 0., 0.], [-1., -1., -1.]])
     a3 = np.array([[2., 2., 2.], [0., 0., 0.], [-2., -2., -2.]])
     self.assertAlmostEqual(ftme.rmsd(a1, a3), math.sqrt(2))
Example #20
0
 def test_rmsd(self):
     a1 = np.array([[1., 1., 1.], [0., 0., 0.], [-1., -1., -1.]])
     a3 = np.array([[2., 2., 2.], [0., 0., 0.], [-2., -2., -2.]])
     self.assertAlmostEqual(ftme.rmsd(a1, a3), math.sqrt(2))