Example #1
0
def test_sparse_ci2():
    import math
    import psi4
    import forte
    import itertools
    import numpy as np
    import pytest
    from forte import forte_options

    ref_fci = -5.623851783330647

    psi4.core.clean()
    # need to clean the options otherwise this job will interfere
    forte.clean_options()

    h2o = psi4.geometry("""
     He
     He 1 1.0
    """)

    psi4.set_options({'basis': 'cc-pVDZ'})
    _, wfn = psi4.energy('scf', return_wfn=True)
    na = wfn.nalpha()
    nb = wfn.nbeta()
    nirrep = wfn.nirrep()
    wfn_symmetry = 0

    forte.startup()
    forte.banner()

    psi4_options = psi4.core.get_options()
    psi4_options.set_current_module('FORTE')
    forte_options.get_options_from_psi4(psi4_options)

    # Setup forte and prepare the active space integral class
    nmopi = wfn.nmopi()
    point_group = wfn.molecule().point_group().symbol()
    mo_space_info = forte.make_mo_space_info(nmopi, point_group, forte_options)
    ints = forte.make_ints_from_psi4(wfn, forte_options, mo_space_info)
    as_ints = forte.make_active_space_ints(mo_space_info, ints, 'ACTIVE', ['RESTRICTED_DOCC'])

    print('\n\n  => Sparse FCI Test <=')
    print('  Number of irreps: {}'.format(nirrep))
    nmo = wfn.nmo()
    nmopi = [wfn.nmopi()[h] for h in range(nirrep)]
    nmopi_str = [str(wfn.nmopi()[h]) for h in range(nirrep)]
    mo_sym = []
    for h in range(nirrep):
        for i in range(nmopi[h]):
            mo_sym.append(h)

    print('  Number of orbitals per irreps: [{}]'.format(','.join(nmopi_str)))
    print('  Symmetry of the MOs: ', mo_sym)

    hf_reference = forte.Determinant()
    hf_reference.create_alfa_bit(0)
    hf_reference.create_beta_bit(0)
    print('  Hartree-Fock determinant: {}'.format(hf_reference.str(10)))

    # Compute the HF energy
    hf_energy = as_ints.nuclear_repulsion_energy() + as_ints.slater_rules(hf_reference, hf_reference)
    print('  Nuclear repulsion energy: {}'.format(as_ints.nuclear_repulsion_energy()))
    print('  Reference energy: {}'.format(hf_energy))

    # Build a list of determinants
    orblist = [i for i in range(nmo)]
    dets = []
    for astr in itertools.combinations(orblist, na):
        for bstr in itertools.combinations(orblist, nb):
            sym = 0
            d = forte.Determinant()
            for a in astr:
                d.create_alfa_bit(a)
                sym = sym ^ mo_sym[a]
            for b in bstr:
                d.create_beta_bit(b)
                sym = sym ^ mo_sym[b]
            if (sym == wfn_symmetry):
                dets.append(d)
                print('  Determinant {} has symmetry {}'.format(d.str(nmo), sym))

    print(f'\n  Size of the derminant basis: {len(dets)}')

    energy, evals, evecs, spin = forte.diag(dets, as_ints, 1, 1, "FULL")

    print(energy)

    efci = energy[0] + as_ints.nuclear_repulsion_energy()

    print('\n  FCI Energy: {}\n'.format(efci))

    assert efci == pytest.approx(ref_fci, abs=1e-9)

    # Clean up forte (necessary)
    forte.cleanup()
Example #2
0
def prepare_forte_objects(wfn,
                          mo_spaces=None,
                          active_space='ACTIVE',
                          core_spaces=['RESTRICTED_DOCC'],
                          localize=False,
                          localize_spaces=[]):
    """Take a psi4 wavefunction object and prepare the ForteIntegrals, SCFInfo, and MOSpaceInfo objects

    Parameters
    ----------
    wfn : psi4 Wavefunction
        A psi4 Wavefunction object
    mo_spaces : dict
        A dictionary with the size of each space (e.g., {'ACTIVE' : [3]})
    active_space : str
        The MO space treated as active (default: 'ACTIVE')
    core_spaces : list(str)
        The MO spaces treated as active (default: ['RESTRICTED_DOCC'])
    localize : bool
        Do localize the orbitals? (defaul: False)
    localize_spaces : list(str)
        A list of spaces to localize (default: [])
    Returns
    -------
    tuple(ForteIntegrals, ActiveSpaceIntegrals, SCFInfo, MOSpaceInfo, map(StateInfo : list)
        a tuple containing the ForteIntegrals, SCFInfo, and MOSpaceInfo objects and a map of states and weights
    """
    # fill in the options object
    psi4_options = psi4.core.get_options()
    psi4_options.set_current_module('FORTE')
    options = forte.forte_options
    options.get_options_from_psi4(psi4_options)

    if ('DF' in options.get_str('INT_TYPE')):
        aux_basis = psi4.core.BasisSet.build(
            wfn.molecule(), 'DF_BASIS_MP2',
            psi4.core.get_global_option('DF_BASIS_MP2'), 'RIFIT',
            psi4.core.get_global_option('BASIS'))
        wfn.set_basisset('DF_BASIS_MP2', aux_basis)

    if (options.get_str('MINAO_BASIS')):
        minao_basis = psi4.core.BasisSet.build(
            wfn.molecule(), 'MINAO_BASIS', psi4_options.get_str('MINAO_BASIS'))
        wfn.set_basisset('MINAO_BASIS', minao_basis)

    # Prepare base objects
    scf_info = forte.SCFInfo(wfn)

    nmopi = wfn.nmopi()
    point_group = wfn.molecule().point_group().symbol()

    if mo_spaces == None:
        mo_space_info = forte.make_mo_space_info(nmopi, point_group, options)
    else:
        mo_space_info = forte.make_mo_space_info_from_map(
            nmopi, point_group, mo_spaces, [])

    state_weights_map = forte.make_state_weights_map(options, mo_space_info)

    ints = forte.make_ints_from_psi4(wfn, options, mo_space_info)

    if localize:
        localizer = forte.Localize(forte.forte_options, ints, mo_space_info)
        localizer.set_orbital_space(localize_spaces)
        localizer.compute_transformation()
        Ua = localizer.get_Ua()
        ints.rotate_orbitals(Ua, Ua)

    # the space that defines the active orbitals. We select only the 'ACTIVE' part
    # the space(s) with non-active doubly occupied orbitals

    as_ints = forte.make_active_space_ints(mo_space_info, ints, active_space,
                                           core_spaces)

    return (ints, as_ints, scf_info, mo_space_info, state_weights_map)
Example #3
0
def gradient_forte(name, **kwargs):
    r"""Function encoding sequence of PSI module and plugin calls so that
    forte can be called via :py:func:`~driver.energy`. For post-scf plugins.

    >>> gradient('forte')
        available for : CASSCF
    """

    # # Start Forte, initialize ambit
    # my_proc_n_nodes = forte.startup()
    # my_proc, n_nodes = my_proc_n_nodes

    # Get the psi4 option object
    optstash = p4util.OptionsState(['GLOBALS', 'DERTYPE'])
    psi4.core.set_global_option('DERTYPE', 'FIRST')

    # Build Forte options
    options = prepare_forte_options()

    # Print the banner
    forte.banner()

    # Run a method
    job_type = options.get_str('JOB_TYPE')

    if job_type not in {"CASSCF", "MCSCF_TWO_STEP"}:
        raise Exception(
            'Analytic energy gradients are only implemented for job_types CASSCF and MCSCF_TWO_STEP.'
        )

    # Prepare Forte objects: state_weights_map, mo_space_info, scf_info
    forte_objects = prepare_forte_objects(options, name, **kwargs)
    ref_wfn, state_weights_map, mo_space_info, scf_info, fcidump = forte_objects

    # Make an integral object
    time_pre_ints = time.time()

    ints = forte.make_ints_from_psi4(ref_wfn, options, mo_space_info)

    start = time.time()

    # Rotate orbitals before computation
    orb_type = options.get_str("ORBITAL_TYPE")
    if orb_type != 'CANONICAL':
        orb_t = forte.make_orbital_transformation(orb_type, scf_info, options,
                                                  ints, mo_space_info)
        orb_t.compute_transformation()
        Ua = orb_t.get_Ua()
        Ub = orb_t.get_Ub()
        ints.rotate_orbitals(Ua, Ub)

    if job_type == "CASSCF":
        casscf = forte.make_casscf(state_weights_map, scf_info, options,
                                   mo_space_info, ints)
        energy = casscf.compute_energy()
        casscf.compute_gradient()

    if job_type == "MCSCF_TWO_STEP":
        casscf = forte.make_mcscf_two_step(state_weights_map, scf_info,
                                           options, mo_space_info, ints)
        energy = casscf.compute_energy()

    time_pre_deriv = time.time()

    derivobj = psi4.core.Deriv(ref_wfn)
    derivobj.set_deriv_density_backtransformed(True)
    derivobj.set_ignore_reference(True)
    grad = derivobj.compute(psi4.core.DerivCalcType.Correlated)
    ref_wfn.set_gradient(grad)
    optstash.restore()

    end = time.time()

    # Close ambit, etc.
    # forte.cleanup()

    # Print timings
    psi4.core.print_out('\n\n ==> Forte Timings <==\n')
    times = [('prepare integrals', start - time_pre_ints),
             ('run forte energy', time_pre_deriv - start),
             ('compute derivative integrals', end - time_pre_deriv)]
    max_key_size = max(len(k) for k, v in times)
    for key, value in times:
        psi4.core.print_out(f'\n  Time to {key:{max_key_size}} :'
                            f' {value:12.3f} seconds')
    psi4.core.print_out(f'\n  {"Total":{max_key_size + 8}} :'
                        f' {end - time_pre_ints:12.3f} seconds\n')

    # Dump orbitals if needed
    if options.get_bool('DUMP_ORBITALS'):
        dump_orbitals(ref_wfn)

    return ref_wfn
Example #4
0
def test_sparse_ci():
    import math
    import psi4
    import forte
    import itertools
    import numpy as np
    import pytest
    from forte import forte_options

    ref_fci = -1.101150330132956

    psi4.core.clean()
    # need to clean the options otherwise this job will interfere
    forte.clean_options()

    psi4.geometry("""
     H
     H 1 1.0
    """)

    psi4.set_options({'basis': 'sto-3g'})
    E_scf, wfn = psi4.energy('scf', return_wfn=True)
    na = wfn.nalpha()
    nb = wfn.nbeta()
    nirrep = wfn.nirrep()
    wfn_symmetry = 0

    psi4_options = psi4.core.get_options()
    psi4_options.set_current_module('FORTE')
    forte_options.get_options_from_psi4(psi4_options)

    # Setup forte and prepare the active space integral class
    nmopi = wfn.nmopi()
    point_group = wfn.molecule().point_group().symbol()
    mo_space_info = forte.make_mo_space_info(nmopi, point_group, forte_options)
    ints = forte.make_ints_from_psi4(wfn, forte_options, mo_space_info)
    as_ints = forte.make_active_space_ints(mo_space_info, ints, 'ACTIVE', ['RESTRICTED_DOCC'])
    as_ints.print()

    print('\n\n  => Sparse FCI Test <=')
    print('  Number of irreps: {}'.format(nirrep))
    nmo = wfn.nmo()
    nmopi = [wfn.nmopi()[h] for h in range(nirrep)]
    nmopi_str = [str(wfn.nmopi()[h]) for h in range(nirrep)]
    mo_sym = []
    for h in range(nirrep):
        for i in range(nmopi[h]):
            mo_sym.append(h)

    print('  Number of orbitals per irreps: [{}]'.format(','.join(nmopi_str)))
    print('  Symmetry of the MOs: ', mo_sym)

    hf_reference = forte.Determinant()
    hf_reference.create_alfa_bit(0)
    hf_reference.create_beta_bit(0)
    print('  Hartree-Fock determinant: {}'.format(hf_reference.str(2)))

    # Compute the HF energy
    hf_energy = as_ints.nuclear_repulsion_energy() + as_ints.slater_rules(hf_reference, hf_reference)
    print('  Nuclear repulsion energy: {}'.format(as_ints.nuclear_repulsion_energy()))
    print('  Reference energy: {}'.format(hf_energy))

    # Build a list of determinants
    orblist = [i for i in range(nmo)]
    dets = []
    for astr in itertools.combinations(orblist, na):
        for bstr in itertools.combinations(orblist, nb):
            sym = 0
            d = forte.Determinant()
            for a in astr:
                d.create_alfa_bit(a)
                sym = sym ^ mo_sym[a]
            for b in bstr:
                d.create_beta_bit(b)
                sym = sym ^ mo_sym[b]
            if (sym == wfn_symmetry):
                dets.append(d)
                print('  Determinant {} has symmetry {}'.format(d.str(nmo), sym))

    # Build the Hamiltonian matrix using 'slater_rules'
    nfci = len(dets)
    H = np.ndarray((nfci, nfci))
    for I in range(nfci):
        # off-diagonal terms
        for J in range(I + 1, nfci):
            HIJ = as_ints.slater_rules(dets[I], dets[J])
            H[I][J] = H[J][I] = HIJ
        # diagonal term
        H[I][I] = as_ints.nuclear_repulsion_energy() + as_ints.slater_rules(dets[I], dets[I])

    # Find the lowest eigenvalue
    efci = np.linalg.eigh(H)[0][0]

    print('\n  FCI Energy: {}\n'.format(efci))

    assert efci == pytest.approx(ref_fci, 1.0e-9)
Example #5
0
def run_forte(name, **kwargs):
    r"""Function encoding sequence of PSI module and plugin calls so that
    forte can be called via :py:func:`~driver.energy`. For post-scf plugins.

    >>> energy('forte')

    """

    # # Start Forte, initialize ambit
    # my_proc_n_nodes = forte.startup()
    # my_proc, n_nodes = my_proc_n_nodes

    # Build Forte options
    options = prepare_forte_options()

    # Print the banner
    forte.banner()

    # Prepare Forte objects: state_weights_map, mo_space_info, scf_info
    forte_objects = prepare_forte_objects(options, name, **kwargs)
    ref_wfn, state_weights_map, mo_space_info, scf_info, fcidump = forte_objects

    job_type = options.get_str('JOB_TYPE')
    if job_type == 'NONE' and options.get_str("ORBITAL_TYPE") == 'CANONICAL':
        psi4.core.set_scalar_variable('CURRENT ENERGY', 0.0)
        return ref_wfn

    start_pre_ints = time.time()

    if 'FCIDUMP' in options.get_str('INT_TYPE'):
        psi4.core.print_out('\n  Forte will use custom integrals')
        # Make an integral object from the psi4 wavefunction object
        ints = make_ints_from_fcidump(fcidump, options, mo_space_info)
    else:
        psi4.core.print_out('\n  Forte will use psi4 integrals')
        # Make an integral object from the psi4 wavefunction object
        ints = forte.make_ints_from_psi4(ref_wfn, options, mo_space_info)

    start = time.time()

    # Rotate orbitals before computation (e.g. localization, MP2 natural orbitals, etc.)
    orb_type = options.get_str("ORBITAL_TYPE")
    if orb_type != 'CANONICAL':
        orb_t = forte.make_orbital_transformation(orb_type, scf_info, options,
                                                  ints, mo_space_info)
        orb_t.compute_transformation()
        Ua = orb_t.get_Ua()
        Ub = orb_t.get_Ub()
        ints.rotate_orbitals(Ua, Ub, job_type != 'NONE')

    # Run a method
    if job_type == 'NONE':
        psi4.core.set_scalar_variable('CURRENT ENERGY', 0.0)
        # forte.cleanup()
        return ref_wfn

    energy = 0.0

    if (options.get_bool("CASSCF_REFERENCE") or job_type == "CASSCF"):
        if options.get_str('INT_TYPE') == 'FCIDUMP':
            raise Exception('Forte: the CASSCF code cannot use integrals read'
                            ' from a FCIDUMP file')

        casscf = forte.make_casscf(state_weights_map, scf_info, options,
                                   mo_space_info, ints)
        energy = casscf.compute_energy()

    if (job_type == "MCSCF_TWO_STEP"):
        casscf = forte.make_mcscf_two_step(state_weights_map, scf_info,
                                           options, mo_space_info, ints)
        energy = casscf.compute_energy()

    if (job_type == 'NEWDRIVER'):
        energy = forte_driver(state_weights_map, scf_info, options, ints,
                              mo_space_info)
    elif (job_type == 'MR-DSRG-PT2'):
        energy = mr_dsrg_pt2(job_type, forte_objects, ints, options)

    end = time.time()

    # Close ambit, etc.
    # forte.cleanup()

    psi4.core.set_scalar_variable('CURRENT ENERGY', energy)

    psi4.core.print_out(
        f'\n\n  Time to prepare integrals: {start - start_pre_ints:12.3f} seconds'
    )
    psi4.core.print_out(
        f'\n  Time to run job          : {end - start:12.3f} seconds')
    psi4.core.print_out(
        f'\n  Total                    : {end - start_pre_ints:12.3f} seconds\n'
    )

    if 'FCIDUMP' not in options.get_str('INT_TYPE'):
        if options.get_bool('DUMP_ORBITALS'):
            dump_orbitals(ref_wfn)
        return ref_wfn