Example #1
0
def prepare_database():
	database = {}

	# load all the images of individuals to recognize into the database
	for file in glob.glob("images/*"):
		identity = os.path.splitext(os.path.basename(file))[0]
		database[identity] = fr_utils.img_path_to_encoding(file, FRmodel)
		print( f'prepare_database: file="{file}", identiti="{identity}"')
	return database
Example #2
0
    def reload_database(self):

        self.database = {}
        # load all the images of individuals to recognize into the database
        for photo_filename in glob.glob("%s/*" % (self.outputPath)):

            photo_object = cv2.imread(photo_filename)
            identity = os.path.splitext(os.path.basename(photo_filename))[0]
            self.database[identity] = fr_utils.img_path_to_encoding(
                photo_filename, self.FRmodel)
def get_face_dists(FR_model):
    face_database = {}

    for name in os.listdir('images'):
        for image in os.listdir(os.path.join('images', name)):
            identity = os.path.splitext(os.path.basename(image))[0]
            face_database[identity] = fr_utils.img_path_to_encoding(
                os.path.join('images', name, image), FR_model)

    print(face_database)
    return face_database
Example #4
0
def myMainMethod():

    FRmodel = inception_blocks_v2.faceRecoModel(input_shape=(3, 96, 96))

    encoding = fr_utils.img_path_to_encoding("crop_frame.jpg", FRmodel)
    print(encoding)
    #     minNeighbors=5,
    #     minSize=(30, 30),
    #     flags=cv2.cv2.CV_HAAR_SCALE_IMAGE
    # )

    faces = faceCascade.detectMultiScale(gray, 1.3, 4)

    # Draw a rectangle around the faces
    for (x, y, w, h) in faces:
        # cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        print(x, y, w, h, frame.shape)

        # roi = frame[640:1279, 360:719, :]
        cv2.imwrite("frame.jpg", frame)
        file = cv2.imread("frame.jpg")
        temp_img = file[y-50:y + w+50, x-50:x + h+50]
        cv2.imwrite("temp_file.jpg", temp_img)

        encoding = fr_utils.img_path_to_encoding("temp_file.jpg", FRmodel)
        print(encoding)

    # Display the resulting frame
    cv2.imshow('Video', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()