Example #1
0
def remove_identical_sindex(geosrs: gpd.GeoSeries,
                            snap_threshold: float) -> gpd.GeoSeries:
    """
    Remove stacked nodes by using a search buffer the size of snap_threshold.
    """
    geosrs_reset = geosrs.reset_index(inplace=False, drop=True)
    assert isinstance(geosrs_reset, gpd.GeoSeries)
    geosrs = geosrs_reset
    spatial_index = geosrs.sindex
    identical_idxs = []
    point: Point
    for idx, point in enumerate(geosrs.geometry.values):
        if idx in identical_idxs:
            continue
        # point = point.buffer(snap_threshold) if snap_threshold != 0 else point
        p_candidate_idxs = (
            # list(spatial_index.intersection(point.buffer(snap_threshold).bounds))
            spatial_index_intersection(
                spatial_index=spatial_index,
                coordinates=geom_bounds(
                    safe_buffer(geom=point, radius=snap_threshold)),
            ) if snap_threshold != 0 else list(
                spatial_index.intersection(point.coords[0])))
        p_candidate_idxs.remove(idx)
        p_candidates = geosrs.iloc[p_candidate_idxs]
        inter = p_candidates.distance(point) < snap_threshold
        colliding = inter.loc[inter]
        if len(colliding) > 0:
            index_to_list = colliding.index.to_list()
            assert len(index_to_list) > 0
            assert all(isinstance(i, int) for i in index_to_list)
            identical_idxs.extend(index_to_list)
    geosrs_dropped = geosrs.drop(identical_idxs)
    assert isinstance(geosrs_dropped, gpd.GeoSeries)
    return geosrs_dropped
Example #2
0
    def estimate_censoring(self, ) -> float:
        """
        Estimate the amount of censoring as area float value.

        Censoring is caused by e.g. vegetation.

        Returns np.nan if no ``censoring_area`` is passed by the user into
        ``Network`` creation or if the passed GeoDataFrame is empty.
        """
        # Either censoring_area is passed directly or its passed in Network
        # creation. Otherwise raise ValueError.
        if self.censoring_area is None:
            raise ValueError(
                "Expected censoring_area as an argument or initialized"
                f" as Network (name:{self.name}) attribute.")
        if not isinstance(self.censoring_area, gpd.GeoDataFrame):
            raise TypeError(
                "Expected censoring_area to be of type gpd.GeoDataFrame."
                f" Got type={type(self.censoring_area)}")
        if self.censoring_area.empty:
            return np.nan

        # Determine bounds of Network.area_gdf
        network_area_bounds = total_bounds(self.area_gdf)

        # Use spatial index to filter censoring polygons that are not near the
        # network
        sindex = pygeos_spatial_index(self.censoring_area)
        index_intersection = spatial_index_intersection(
            spatial_index=sindex, coordinates=network_area_bounds)
        candidate_idxs = list(
            index_intersection if index_intersection is not None else [])
        if len(candidate_idxs) == 0:
            return 0.0
        candidates = self.censoring_area.iloc[candidate_idxs]

        # Clip the censoring areas with the network area and calculate the area
        # sum of leftover area.
        clipped = gpd.clip(candidates, self.area_gdf)
        if not isinstance(clipped, (gpd.GeoDataFrame, gpd.GeoSeries)):
            vals = type(clipped), clipped
            raise TypeError(
                f"Expected that clipped is of geopandas data type. Got: {vals}."
            )
        censoring_value = clipped.area.sum()
        unpacked_value = numpy_to_python_type(censoring_value)
        assert isinstance(unpacked_value, float)
        assert unpacked_value >= 0.0
        return unpacked_value
def determine_trace_candidates(
    geom: LineString,
    idx: int,
    traces: gpd.GeoDataFrame,
    spatial_index: Optional[PyGEOSSTRTreeIndex],
) -> gpd.GeoSeries:
    """
    Determine potentially intersecting traces with spatial index.
    """
    if spatial_index is None:
        logging.error("Expected spatial_index not be None.")
        return gpd.GeoSeries()
    assert isinstance(traces, (gpd.GeoSeries, gpd.GeoDataFrame))
    assert isinstance(spatial_index, PyGEOSSTRTreeIndex)
    candidate_idxs = spatial_index_intersection(spatial_index, geom_bounds(geom))
    candidate_idxs.remove(idx)
    candidate_traces: gpd.GeoSeries = traces.geometry.iloc[candidate_idxs]
    candidate_traces = candidate_traces.loc[  # type: ignore
        [isinstance(geom, LineString) for geom in candidate_traces.geometry.values]
    ]
    return candidate_traces
Example #4
0
def populate_sample_cell(
    sample_cell: Polygon,
    sample_cell_area: float,
    traces_sindex: PyGEOSSTRTreeIndex,
    traces: gpd.GeoDataFrame,
    nodes: gpd.GeoDataFrame,
    snap_threshold: float,
    resolve_branches_and_nodes: bool,
) -> Dict[str, float]:
    """
    Take a single grid polygon and populate it with parameters.

    Mauldon determination requires that E-nodes are defined for
    every single sample circle. If correct Mauldon values are
    wanted `resolve_branches_and_nodes` must be passed as True.
    This will result in much longer analysis time.

    """
    _centroid = sample_cell.centroid
    if not isinstance(_centroid, Point):
        raise TypeError("Expected Point centroid.")
    centroid = _centroid
    sample_circle = safe_buffer(centroid, np.sqrt(sample_cell_area) * 1.5)
    sample_circle_area = sample_circle.area
    assert sample_circle_area > 0

    # Choose geometries that are either within the sample_circle or
    # intersect it
    # Use spatial indexing to filter to only spatially relevant traces,
    # traces and nodes
    trace_candidates_idx = spatial_index_intersection(
        traces_sindex, geom_bounds(sample_circle))
    trace_candidates = traces.iloc[trace_candidates_idx]

    assert isinstance(trace_candidates, gpd.GeoDataFrame)

    if len(trace_candidates) == 0:
        return determine_topology_parameters(
            trace_length_array=np.array([]),
            node_counts=determine_node_type_counts(np.array([]),
                                                   branches_defined=True),
            area=sample_circle_area,
        )
    if resolve_branches_and_nodes:
        # Solve branches and nodes for each cell if wanted
        # Only way to make sure Mauldon parameters are correct
        _, nodes = branches_and_nodes(
            traces=trace_candidates,
            areas=gpd.GeoSeries([sample_circle], crs=traces.crs),
            snap_threshold=snap_threshold,
        )
    # node_candidates_idx = list(nodes_sindex.intersection(sample_circle.bounds))
    node_candidates_idx = spatial_index_intersection(
        spatial_index=pygeos_spatial_index(nodes),
        coordinates=geom_bounds(sample_circle),
    )

    node_candidates = nodes.iloc[node_candidates_idx]

    # Crop traces to sample circle
    # First check if any geometries intersect
    # If not: sample_features is an empty GeoDataFrame
    if any(
            trace_candidate.intersects(sample_circle)
            for trace_candidate in trace_candidates.geometry.values):
        sample_traces = crop_to_target_areas(
            traces=trace_candidates,
            areas=gpd.GeoSeries([sample_circle]),
            is_filtered=True,
            keep_column_data=False,
        )
    else:
        sample_traces = traces.iloc[0:0]
    if any(node.intersects(sample_circle) for node in nodes.geometry.values):
        # if any(nodes.intersects(sample_circle)):
        # TODO: Is node clipping stable?
        sample_nodes = gpd.clip(node_candidates, sample_circle)
        assert sample_nodes is not None
        assert all(
            isinstance(val, Point) for val in sample_nodes.geometry.values)
    else:
        sample_nodes = nodes.iloc[0:0]

    assert isinstance(sample_nodes, gpd.GeoDataFrame)
    assert isinstance(sample_traces, gpd.GeoDataFrame)

    sample_node_type_values = sample_nodes[CLASS_COLUMN].values
    assert isinstance(sample_node_type_values, np.ndarray)

    node_counts = determine_node_type_counts(sample_node_type_values,
                                             branches_defined=True)

    topology_parameters = determine_topology_parameters(
        trace_length_array=sample_traces.geometry.length.values,
        node_counts=node_counts,
        area=sample_circle_area,
        correct_mauldon=resolve_branches_and_nodes,
    )
    return topology_parameters
Example #5
0
 def choose_geometries(sindex, sample_circle, geometries):
     candidates_idx = spatial_index_intersection(sindex,
                                                 geom_bounds(sample_circle))
     candidates = geometries.iloc[candidates_idx]
     assert isinstance(candidates, gpd.GeoDataFrame)
     return candidates
Example #6
0
def get_branch_identities(
    branches: gpd.GeoSeries,
    nodes: gpd.GeoSeries,
    node_identities: list,
    snap_threshold: float,
) -> List[str]:
    """
    Determine the types of branches for a GeoSeries of branches.

    i.e. C-C, C-I or I-I, + (C-E, E-E, I-E)

    >>> branches = gpd.GeoSeries(
    ...     [
    ...         LineString([(1, 1), (2, 2)]),
    ...         LineString([(2, 2), (3, 3)]),
    ...         LineString([(3, 0), (2, 2)]),
    ...         LineString([(2, 2), (-2, 5)]),
    ...     ]
    ... )
    >>> nodes = gpd.GeoSeries(
    ...     [
    ...         Point(2, 2),
    ...         Point(1, 1),
    ...         Point(3, 3),
    ...         Point(3, 0),
    ...         Point(-2, 5),
    ...     ]
    ... )
    >>> node_identities = ["X", "I", "I", "I", "E"]
    >>> snap_threshold = 0.001
    >>> get_branch_identities(branches, nodes, node_identities, snap_threshold)
    ['C - I', 'C - I', 'C - I', 'C - E']

    """
    assert len(nodes) == len(node_identities)
    node_spatial_index = pygeos_spatial_index(nodes)
    branch_identities = []
    for branch in branches.geometry.values:
        assert isinstance(branch, LineString)
        node_candidate_idxs = spatial_index_intersection(
            spatial_index=node_spatial_index, coordinates=geom_bounds(branch))
        # node_candidate_idxs = list(node_spatial_index.intersection(branch.bounds))
        node_candidates = nodes.iloc[node_candidate_idxs]
        node_candidate_types = [
            node_identities[i] for i in node_candidate_idxs
        ]

        # Use distance instead of two polygon buffers
        inter = [
            dist < snap_threshold for dist in node_candidates.distance(
                MultiPoint(list(get_trace_endpoints(branch)))).values
        ]
        assert len(inter) == len(node_candidates)
        # nodes_that_intersect = node_candidates.loc[inter]
        nodes_that_intersect_types = list(compress(node_candidate_types,
                                                   inter))
        number_of_E_nodes = sum(
            [inter_id == E_node for inter_id in nodes_that_intersect_types])
        number_of_I_nodes = sum(
            [inter_id == I_node for inter_id in nodes_that_intersect_types])
        number_of_XY_nodes = sum([
            inter_id in [X_node, Y_node]
            for inter_id in nodes_that_intersect_types
        ])
        branch_identities.append(
            determine_branch_identity(number_of_I_nodes, number_of_XY_nodes,
                                      number_of_E_nodes))

    return branch_identities
Example #7
0
def determine_proximal_traces(
    traces: Union[gpd.GeoSeries, gpd.GeoDataFrame],
    buffer_value: float,
    azimuth_tolerance: float,
) -> gpd.GeoDataFrame:
    """
    Determine proximal traces.

    Takes an input of GeoSeries or GeoDataFrame
    of LineString geometries and returns a GeoDataFrame with a new
    column `Merge` which has values of True or False depending on if
    nearby proximal traces were found.

    E.g.

    >>> lines = [
    ...     LineString([(0, 0), (0, 3)]),
    ...     LineString([(1, 0), (1, 3)]),
    ...     LineString([(5, 0), (5, 3)]),
    ...     LineString([(0, 0), (-3, -3)]),
    ... ]
    >>> traces = gpd.GeoDataFrame({"geometry": lines})
    >>> buffer_value = 1.1
    >>> azimuth_tolerance = 10
    >>> determine_proximal_traces(traces, buffer_value, azimuth_tolerance)
                                              geometry  Merge
    0    LINESTRING (0.00000 0.00000, 0.00000 3.00000)   True
    1    LINESTRING (1.00000 0.00000, 1.00000 3.00000)   True
    2    LINESTRING (5.00000 0.00000, 5.00000 3.00000)  False
    3  LINESTRING (0.00000 0.00000, -3.00000 -3.00000)  False

    """
    assert isinstance(traces, (gpd.GeoSeries, gpd.GeoDataFrame))
    if isinstance(traces, gpd.GeoSeries):
        traces_as_gdf: gpd.GeoDataFrame = gpd.GeoDataFrame(geometry=traces)
    else:
        traces_as_gdf = traces
    traces_as_gdf.reset_index(inplace=True, drop=True)
    spatial_index = pygeos_spatial_index(traces_as_gdf)
    trace: LineString
    proximal_traces: List[int] = []
    for idx, trace in enumerate(traces_as_gdf.geometry.values):
        candidate_idxs = spatial_index_intersection(
            spatial_index, geom_bounds(safe_buffer(trace, buffer_value * 5)))
        candidate_idxs.remove(idx)
        candidate_traces: Union[
            gpd.GeoSeries,
            gpd.GeoDataFrame] = traces_as_gdf.iloc[candidate_idxs]
        candidate_traces = candidate_traces.loc[  # type: ignore
            [
                is_within_buffer_distance(trace, other, buffer_value) and
                is_similar_azimuth(trace, other, tolerance=azimuth_tolerance)
                for other in candidate_traces.geometry.values
            ]]
        if len(candidate_traces) > 0:
            proximal_traces.extend([
                i for i in list(candidate_traces.index) + [idx]  # type: ignore
                if i not in proximal_traces
            ])
    traces_as_gdf[MERGE_COLUMN] = [
        i in proximal_traces for i in traces_as_gdf.index
    ]
    return traces_as_gdf