# -*- coding: utf-8 -*- #%% from framework.model_stacking import ModelTrainer, ModelPerformanceTracker from sklearn.neural_network import MLPClassifier as ThisModel #%% # # Set up model for training # this_model = ModelTrainer( ModelClass=ThisModel, #Model algorithm model_params=dict(hidden_layer_sizes=(50, 25, 10)), #hyper-parameters model_id='L1NN1', # Model Identifier feature_set='L1FS01' # feature set to use ) model_tracker = ModelPerformanceTracker(model_trainer=this_model) #%% # # clear out old results # this_model.cleanPriorResults() #%% # # train model on all the data # this_model.trainModel() #%% # create Test predictions
# -*- coding: utf-8 -*- #%% from framework.model_stacking import ModelTrainer, ModelPerformanceTracker from sklearn.ensemble import RandomForestClassifier as ThisModel #%% # # Set up model for training # this_model = ModelTrainer( ModelClass=ThisModel, #Model algorithm model_params=dict(n_estimators=200, max_depth=5, n_jobs=-1), #hyper-parameters model_id='L1RF1', # Model Identifier feature_set='L1FS01' # feature set to use ) model_tracker = ModelPerformanceTracker(model_trainer=this_model) #%% # # clear out old results # this_model.cleanPriorResults() #%% # # train model on all the data # this_model.trainModel() #%%
# -*- coding: utf-8 -*- #%% from framework.model_stacking import ModelTrainer, ModelPerformanceTracker from sklearn.linear_model import LogisticRegression as ThisModel #%% # # Set up model for training # this_model = ModelTrainer( ModelClass=ThisModel, #Model algorithm model_params=dict(penalty='l1', C=0.1, tol=1e-5, random_state=13), #hyper-parameters model_id='L0LOG1', # Model Identifier feature_set='KFS04' # feature set to use ) model_tracker = ModelPerformanceTracker(model_trainer=this_model) #%% # # clear out old results # this_model.cleanPriorResults() #%% # # train model on all the data # this_model.trainModel() #%%
# -*- coding: utf-8 -*- #%% from framework.model_stacking import ModelTrainer, ModelPerformanceTracker from xgboost import XGBClassifier as ThisModel #%% # # Set up model for training # this_model = ModelTrainer( ModelClass=ThisModel, #Model algorithm model_params=dict(n_estimators=100,n_jobs=6), #hyper-parameters model_id='L0XGB1', # Model Identifier feature_set='KFSBSLN' # feature set to use ) model_tracker = ModelPerformanceTracker(model_trainer=this_model) #%% # # clear out old results # this_model.cleanPriorResults() #%% # # train model on all the data # this_model.trainModel() #%% # create Test predictions