Example #1
0
    def test_experiment_weightedMean_MNIST_predefModel_alexnet(self):
        with sf.test_mode():
            modelName = "alexnet"

            metadata = sf.Metadata(testFlag=True,
                                   trainFlag=True,
                                   debugInfo=True)
            dataMetadata = dc.DefaultData_Metadata(
                pin_memoryTest=True,
                pin_memoryTrain=True,
                epoch=1,
                test_howOftenPrintTrain=2,
                howOftenPrintTrain=3,
                resizeTo=Test_RunExperiment.MNIST_RESIZE)
            optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9}

            obj = models.alexnet()
            smoothingMetadata = dc.Test_DefaultSmoothingOscilationWeightedMean_Metadata(
                test_weightIter=dc.DefaultWeightDecay(1.05),
                test_device='cpu',
                test_epsilon=1e-5,
                test_hardEpsilon=1e-7,
                test_weightsEpsilon=1e-6,
                test_weightSumContainerSize=3,
                test_weightSumContainerSizeStartAt=1,
                test_lossContainer=20,
                test_lossContainerDelayedStartAt=10)
            modelMetadata = dc.DefaultModel_Metadata(
                lossFuncDataDict={},
                optimizerDataDict=optimizerDataDict,
                device='cuda:0')

            data = dc.DefaultDataMNIST(dataMetadata)
            smoothing = dc.DefaultSmoothingOscilationWeightedMean(
                smoothingMetadata)
            model = dc.DefaultModelPredef(obj=obj,
                                          modelMetadata=modelMetadata,
                                          name=modelName)

            optimizer = optim.SGD(model.getNNModelModule().parameters(),
                                  lr=optimizerDataDict['learning_rate'],
                                  momentum=optimizerDataDict['momentum'])
            loss_fn = nn.CrossEntropyLoss()

            stat = dc.run(metadataObj=metadata,
                          data=data,
                          model=model,
                          smoothing=smoothing,
                          optimizer=optimizer,
                          lossFunc=loss_fn,
                          modelMetadata=modelMetadata,
                          dataMetadata=dataMetadata,
                          smoothingMetadata=smoothingMetadata)
    def test_updateTotalNumbLoops_testMode(self):
        with sf.test_mode():
            dataMetadata = dc.DefaultData_Metadata(epoch=7)
            data = dc.DefaultDataMNIST(dataMetadata)
            data.epochHelper = sf.EpochDataContainer()

            data._updateTotalNumbLoops(dataMetadata)

            ut.testCmpPandas(data.epochHelper.maxTrainTotalNumber,
                             "max_loops_train",
                             7 * sf.StaticData.MAX_DEBUG_LOOPS * 1)
            ut.testCmpPandas(data.epochHelper.maxTestTotalNumber,
                             "max_loops_test",
                             7 * sf.StaticData.MAX_DEBUG_LOOPS * 2)
Example #3
0
    def test_experiment_borderline_MNIST_predefModel_wide_resnet(self):
        with sf.test_mode():
            modelName = "wide_resnet"

            metadata = sf.Metadata(testFlag=True,
                                   trainFlag=True,
                                   debugInfo=True)
            dataMetadata = dc.DefaultData_Metadata(
                pin_memoryTest=True,
                pin_memoryTrain=True,
                epoch=1,
                test_howOftenPrintTrain=2,
                howOftenPrintTrain=3,
                resizeTo=Test_RunExperiment.MNIST_RESIZE)
            optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9}

            obj = models.wide_resnet50_2()
            smoothingMetadata = dc.Test_DefaultSmoothingBorderline_Metadata(
                test_numbOfBatchAfterSwitchOn=5, test_device='cuda:0')
            modelMetadata = dc.DefaultModel_Metadata(
                lossFuncDataDict={},
                optimizerDataDict=optimizerDataDict,
                device='cuda:0')

            data = dc.DefaultDataMNIST(dataMetadata)
            smoothing = dc.DefaultSmoothingBorderline(smoothingMetadata)
            model = dc.DefaultModelPredef(obj=obj,
                                          modelMetadata=modelMetadata,
                                          name=modelName)

            optimizer = optim.SGD(model.getNNModelModule().parameters(),
                                  lr=optimizerDataDict['learning_rate'],
                                  momentum=optimizerDataDict['momentum'])
            loss_fn = nn.CrossEntropyLoss()

            stat = dc.run(metadataObj=metadata,
                          data=data,
                          model=model,
                          smoothing=smoothing,
                          optimizer=optimizer,
                          lossFunc=loss_fn,
                          modelMetadata=modelMetadata,
                          dataMetadata=dataMetadata,
                          smoothingMetadata=smoothingMetadata)
Example #4
0
    def test_experiment_pytorchSWA_CIFAR10_predefModel_alexnet(self):
        with sf.test_mode():
            modelName = "simpleConv"

            metadata = sf.Metadata(testFlag=True,
                                   trainFlag=True,
                                   debugInfo=True)
            dataMetadata = dc.DefaultData_Metadata(pin_memoryTest=True,
                                                   pin_memoryTrain=True,
                                                   epoch=1,
                                                   test_howOftenPrintTrain=2,
                                                   howOftenPrintTrain=3)
            optimizerDataDict = {"learning_rate": 1e-3, "momentum": 0.9}

            smoothingMetadata = dc.Test_DefaultPytorchAveragedSmoothing_Metadata(
                test_device='cuda:0')
            modelMetadata = dc.DefaultModel_Metadata(
                lossFuncDataDict={},
                optimizerDataDict=optimizerDataDict,
                device='cuda:0')

            data = dc.DefaultDataMNIST(dataMetadata)
            model = dc.DefaultModelSimpleConv(modelMetadata=modelMetadata)
            smoothing = dc.DefaultPytorchAveragedSmoothing(smoothingMetadata,
                                                           model=model)

            optimizer = optim.SGD(model.getNNModelModule().parameters(),
                                  lr=optimizerDataDict['learning_rate'],
                                  momentum=optimizerDataDict['momentum'])
            loss_fn = nn.CrossEntropyLoss()

            stat = dc.run(metadataObj=metadata,
                          data=data,
                          model=model,
                          smoothing=smoothing,
                          optimizer=optimizer,
                          lossFunc=loss_fn,
                          modelMetadata=modelMetadata,
                          dataMetadata=dataMetadata,
                          smoothingMetadata=smoothingMetadata)
 def test_enterExit(self):
     ut.testCmpPandas(sf.test_mode.isActive(), "test_mode_plain", False)
     with sf.test_mode():
         ut.testCmpPandas(sf.test_mode.isActive(), "test_mode_on", True)
     ut.testCmpPandas(sf.test_mode.isActive(), "test_mode_turn_off", False)
import torch.nn.functional as F
import torchvision.models as models
import torchvision.models.resnet as modResnet
import torchvision.transforms as transforms

import matplotlib.pyplot as plt

from framework import smoothingFramework as sf
from framework import defaultClasses as dc

# wzorowane na pracy https://paperswithcode.com/paper/wide-residual-networks
# model wzorowany na resnet18 https://github.com/huyvnphan/PyTorch_CIFAR10/blob/master/module.py

if(__name__ == '__main__'):
    modelDevice = 'cuda:0'
    if(sf.test_mode().isActive()):
        modelDevice="cuda:0"

    metadata = sf.Metadata(testFlag=True, trainFlag=True, debugInfo=True)
    dataMetadata = dc.DefaultData_Metadata(pin_memoryTest=False, pin_memoryTrain=False, epoch=100, fromGrayToRGB=False,
        batchTrainSize=125, batchTestSize=125, startTestAtEpoch=[0, 24, 44, 74, 99])
    optimizerDataDict={"learning_rate":0.1, "momentum":0.9, "weight_decay":0.001}
    modelMetadata = dc.DefaultModel_Metadata(device=modelDevice, lossFuncDataDict={}, optimizerDataDict=optimizerDataDict)
    loop = 5
    modelName = "wide_resnet"
    prefix = "set_copyOfExper_"
    runningAvgSize = 10
    num_classes = 10
    layers = [2, 2, 2, 2]
    block = modResnet.BasicBlock