Example #1
0
		f.write("std: %s\n" % trainer._training_data._std)
		f.write("max: %s\n" % trainer._training_data._max)
		f.write("min: %s\n" % trainer._training_data._min)
		f.write("cap: %s\n" % (trainer._training_data._mean+2*trainer._training_data._std+100))
		total = np.sum(trainer._training_data._y_count[1:])
		for i, j in enumerate(trainer._training_data._y_count):
			if i > 0:
				f.write("%02d %05d %0.5f %s\n" % (i, j, j/total, params['id_to_keyword'][i - 1]))
			else:
				f.write("%02d %05d %0.5f %s\n" % (i, j, j/total, ''))


def train_iteration_done(trainer, epoch, index, iteration_count, loss_value, training_done, run_results, params):
	save_y_count(trainer, live_replacement_count_filename)
	_default_train_iteration_done(trainer, epoch, index, iteration_count, loss_value, training_done, run_results, params)


#print(training_data.next_batch(10))
trainer = Trainer(inference=model.inference, batch_size=utils.get_dict_value(params, 'batch_size', 128),
                  loss=losses.softmax_xentropy
									, model_output_location=utils.get_dict_value(params, 'output_location')
									, name=utils.get_dict_value(params, 'model_name')
									, training_data=training_data, train_iteration_done=train_iteration_done,
                  params=params)

trainer.run(restore_latest_ckpt=True, save_network=True,
            save_ckpt=True, mini_batches_between_checkpoint=utils.get_dict_value(params, 'mini_batches_between_checkpoint', 1000),
            additional_nodes_to_evaluate=['encoded_sentence']
            ,on_checkpoint_saved=on_checkpoint_saved)

Example #2
0
param_file = 'params.py'
params = utils.load_param_file(param_file)
os.makedirs(utils.get_dict_value(params, 'output_location'), exist_ok=True)

files_to_copy = [param_file]
for file in files_to_copy:
    shutil.copyfile(
        file,
        os.path.join(utils.get_dict_value(params, 'output_location'), file))

files = []
for i in range(29):
    files.append(['features_%03d.npy' % i, 'scores_%03d.npy' % i])
training_data = data.PPTDesignerData(params=params, files=files)

trainer = Trainer(inference=model.inference,
                  batch_size=utils.get_dict_value(params, 'batch_size', 128),
                  loss=losses.l2_loss,
                  model_output_location=utils.get_dict_value(
                      params, 'output_location'),
                  name=utils.get_dict_value(params, 'model_name'),
                  training_data=training_data,
                  params=params)

trainer.run(restore_latest_ckpt=False,
            save_network=True,
            save_ckpt=True,
            mini_batches_between_checkpoint=utils.get_dict_value(
                params, 'mini_batches_between_checkpoint', 1000))
Example #3
0
                print("NEW LEARNING RATE %s" % new_lr)
                trainer.set_learning_rate(new_lr)

    params['eval_results'] = [run_results['tpp']]
    trainer.last_epoch = epoch
    return framework.trainer._default_train_iteration_done(
        trainer, epoch, index, iteration_count, loss_value, training_done,
        run_results, params)


#print(training_data.next_batch(10))
trainer = Trainer(inference=model.inference,
                  batch_size=utils.get_dict_value(params, 'batch_size', 128),
                  loss=model.loss,
                  model_output_location=utils.get_dict_value(
                      params, 'output_location'),
                  name=utils.get_dict_value(params, 'model_name'),
                  training_data=data,
                  train_iteration=Trainer._rnn_train_iteration,
                  train_iteration_done=train_iteration_done,
                  optimizer=model.optimizer,
                  params=params)

trainer.run(restore_latest_ckpt=False,
            save_network=True,
            save_ckpt=True,
            mini_batches_between_checkpoint=utils.get_dict_value(
                params, 'mini_batches_between_checkpoint', 1000),
            additional_nodes_to_evaluate=['tpp'],
            on_checkpoint_saved=on_checkpoint_saved)
Example #4
0
        #    print([v.name for v in tf.all_variables()])
        print([iteration, loss_value])
        if (loss_value < 0.15):
            done = True
    return done


# training code:
#   1 - generate some fake data,
#   2 - create a trainer with the data,
#   3 - run the trainer,
#   4 - and save the model
fake_data = training_data.generate_fake_1d_training_data(['x', 'y0'])
trainer = Trainer(inference=inference,
                  batch_size=128,
                  model_output_location=OUTPUT_DIR,
                  name=MODEL_NAME,
                  training_data=fake_data,
                  train_iteration_done=train_iteration_done)
trainer.run(restore_latest_ckpt=False, save_network=True)
trainer.save(output_dir=OUTPUT_DIR,
             pb_filename=PB_FILENAME,
             ckpt_filename=CKPT_FILENAME)
print("Training done")

# test evaluation code
e = Evaluator.load(model_dir=OUTPUT_DIR,
                   pb_filename=PB_FILENAME,
                   ckpt_filename=CKPT_FILENAME)
print(e.eval({'x': 10}, 'ybar'))
Example #5
0
    poly, _ = polynomial(x, 2, name='p')
    poly, _ = rename_nodes(poly, ['ybar'])
    return poly

def train_iteration_done(trainer, iteration, loss_value, done, run_results):
    # debug dump of the variables as we train
    if iteration % 100 == 0:
        a0 = [v for v in tf.all_variables() if v.name == 'p/a0:0']
        a1 = [v for v in tf.all_variables() if v.name == 'p/a1:0']
        a2 = [v for v in tf.all_variables() if v.name == 'p/a2:0']
        logging.info([trainer._training_data.current_epoch(), iteration,
                      loss_value, a0[0].eval(), a1[0].eval(), a2[0].eval()])
#
#       example of how to exit on condition:
#        if (loss_value < 1):
#            done = True
    return done

logging.basicConfig(level=logging.INFO)

# training code: generate some fake data, create a trainer with the data, run the trainer, and save the model
fake_data = training_data.generate_fake_1d_training_data(['x', 'y0'])
trainer = Trainer(inference=inference, model_output_location=OUTPUT_DIR,
                  name='quadratic', training_data=fake_data, train_iteration_done=train_iteration_done,batch_size=16)
trainer.run(num_epochs=5000,restore_latest_ckpt=False, save_network=False)
trainer.save(output_dir=OUTPUT_DIR,pb_filename=PB_FILENAME,ckpt_filename=CKPT_FILENAME)

# test evaluation code
e = Evaluator.load(model_dir=OUTPUT_DIR,pb_filename=PB_FILENAME,ckpt_filename=CKPT_FILENAME)
logging.info(e.eval({'x': 10}, 'ybar'))