Example #1
0
    for j in range(n_mocks_per_F):

        # bookkeeping
        file_suffix = '_F'+str(np.int(np.round(1e3*F_cpd[i]))) + \
                      'uJy_'+str(j).zfill(4)

        # inject a mock CPD into the data
        vis_cpd = inject_CPD((u, v, vis, wgt), (F_cpd[i], r_cpd[j], az_cpd[j]),
                             incl=incl, PA=PA, offRA=offRA, offDEC=offDEC)

        # frank modeling of the data + CPD injection
        sol = FF.fit(u, v, vis_cpd, wgt)

        # save the frank results
        save_fit(u, v, vis_cpd, wgt, sol, 
                 prefix=target+'_gap'+str(gap_ix)+file_suffix,
                 save_vis_fit=False, save_solution=False)

        # clean up file outputs
        os.system('mv '+target+'_gap'+str(gap_ix)+file_suffix + \
                  '_frank_uv_resid.npz resid_vis/')
        os.system('mv '+target+'_gap'+str(gap_ix)+file_suffix + \
                  '_frank_profile_fit.txt mprofiles/')
        os.system('rm '+target+'_gap'+str(gap_ix)+file_suffix+'_frank*')

        # record parameter values (F_cpd in uJy, j, r_cpd, az_cpd)
        with open(target+'_gap'+str(gap_ix)+'_mpars.'+subsuf+'.txt', 'a') as f:
            f.write('%i    %s    %.3f    %i\n' % \
                    (np.int(np.round(1e3*F_cpd[i])), str(j).zfill(4), 
                     r_cpd[j], az_cpd[j]))
Example #2
0
                         disk.disk[target]['PA'],
                         dRA=disk.disk[target]['dx'],
                         dDec=disk.disk[target]['dy'])

    # configure the fitting code setup
    FF = FrankFitter(Rmax=2 * disk.disk[target]['rout'],
                     geometry=geom,
                     N=disk.disk[target]['hyp-Ncoll'],
                     alpha=disk.disk[target]['hyp-alpha'],
                     weights_smooth=disk.disk[target]['hyp-wsmth'])

    # fit the visibilities
    sol = FF.fit(u, v, vis, wgt)

    # save the fit
    save_fit(u, v, vis, wgt, sol, prefix='fits/' + target)
    print('....')
    print('Finished visibility modeling')
    print('....')

if frank_symm:
    print('....')
    print('Performing visibility modeling')
    print('....')

    # load the visibility data
    dat = np.load('data/' + target + '_data_symm.vis.npz')
    u, v, vis, wgt = dat['u'], dat['v'], dat['Vis'], dat['Wgt']

    # set the disk viewing geometry
    geom = FixedGeometry(disk.disk[target]['incl'],
Example #3
0
        CPD_pars = F_cpd[i], r_cpd, az_cpd[j]
        dvis_wcpd = inject_CPD(data,
                               CPD_pars,
                               incl=incl,
                               PA=PA,
                               offRA=offRA,
                               offDEC=offDEC)

        # Frankenstein modeling of the data + CPD injection
        sol = FF.fit(u, v, dvis_wcpd, wgt)

        # save the results
        save_fit(u,
                 v,
                 dvis_wcpd,
                 wgt,
                 sol,
                 prefix=dfile + file_suffix,
                 save_vis_fit=False,
                 save_solution=False)

        # clean up file outputs
        os.system('mv ' + dfile + file_suffix +
                  '_frank_uv_resid.npz resid_vis/')
        os.system('mv ' + dfile + file_suffix +
                  '_frank_profile_fit.txt mprofiles/')
        #os.system('mv '+dfile+file_suffix+'_frank_uv_fit.npz model_vis/')
        os.system('rm ' + dfile + file_suffix + '_frank*')

        # record parameter values (F_cpd in uJy, j, r_cpd, az_cpd)
        with open(dfile + '_mpars.txt', 'a') as f:
            f.write('%i    %s    %.3f    %i\n' % \
Example #4
0
def output_results(u, v, vis, weights, sol, iteration_diagnostics, model):
    r"""
    Save datafiles of fit results; generate and save figures of fit results (see
    frank.io.save_fit, frank.make_figs.make_full_fig,
    frank.make_figs.make_quick_fig, frank.make_figs.make_diag_fig)

    Parameters
    ----------
    u, v : array, unit = :math:`\lambda`
        u and v coordinates of observations
    vis : array, unit = Jy
        Observed visibilities (complex: real + imag * 1j)
    weights : array, unit = Jy^-2
        Weights assigned to observed visibilities, of the form
        :math:`1 / \sigma^2`
    sol : _HankelRegressor object
        Reconstructed profile using Maximum a posteriori power spectrum
        (see frank.radial_fitters.FrankFitter)
    iteration_diagnostics : _HankelRegressor object
        Diagnostics of the fit iteration
        (see radial_fitters.FrankFitter.fit)
    model : dict
        Dictionary containing model parameters the fit uses

    Returns
    -------
    figs : Matplotlib `.Figure` instance
        All produced figures, including the GridSpecs
    axes : Matplotlib `~.axes.Axes` class
        Axes for each of the produced figures
    """

    logging.info('  Plotting results')

    figs, axes = [], []

    if model['plotting']['quick_plot']:
        quick_fig, quick_axes = make_figs.make_quick_fig(
            u, v, vis, weights, sol, model['plotting']['bin_widths'],
            model['plotting']['dist'], model['plotting']['force_style'],
            model['input_output']['save_prefix'])

        figs.append(quick_fig)
        axes.append(quick_axes)

    if model['plotting']['full_plot']:
        full_fig, full_axes = make_figs.make_full_fig(
            u, v, vis, weights, sol, model['plotting']['bin_widths'],
            model['plotting']['dist'], model['plotting']['force_style'],
            model['input_output']['save_prefix'])

        figs.append(full_fig)
        axes.append(full_axes)

    if model['plotting']['diag_plot']:
        diag_fig, diag_axes, _ = make_figs.make_diag_fig(
            sol.r, sol.q, iteration_diagnostics,
            model['plotting']['iter_plot_range'],
            model['plotting']['force_style'],
            model['input_output']['save_prefix'])

        figs.append(diag_fig)
        axes.append(diag_axes)

    io.save_fit(u, v, vis, weights, sol, model['input_output']['save_prefix'],
                model['input_output']['save_solution'],
                model['input_output']['save_profile_fit'],
                model['input_output']['save_vis_fit'],
                model['input_output']['save_uvtables'],
                model['input_output']['iteration_diag'], iteration_diagnostics,
                model['input_output']['format'])

    return figs, axes, model
Example #5
0
def output_results(u, v, vis, weights, sol, geom, model, iteration_diagnostics=None):
    r"""
    Save datafiles of fit results; generate and save figures of fit results (see
    frank.io.save_fit, frank.make_figs)

    Parameters
    ----------
    u, v : array, unit = :math:`\lambda`
        u and v coordinates of observations
    vis : array, unit = Jy
        Observed visibilities (complex: real + imag * 1j)
    weights : array, unit = Jy^-2
        Weights assigned to observed visibilities, of the form
        :math:`1 / \sigma^2`
    sol : _HankelRegressor object
        Reconstructed profile using Maximum a posteriori power spectrum
        (see frank.radial_fitters.FrankFitter)
    geom : SourceGeometry object
        Fitted geometry (see frank.geometry.SourceGeometry)
    model : dict
        Dictionary containing model parameters the fit uses
    iteration_diagnostics : _HankelRegressor object, optional, default=None
        Diagnostics of the fit iteration
        (see radial_fitters.FrankFitter.fit)

    Returns
    -------
    figs : Matplotlib `.Figure` instance
        All produced figures, including the GridSpecs
    axes : Matplotlib `~.axes.Axes` class
        Axes for each of the produced figures
    """

    io.save_fit(u, v, vis, weights, sol,
                model['input_output']['save_prefix'],
                model['input_output']['save_solution'],
                model['input_output']['save_profile_fit'],
                model['input_output']['save_vis_fit'],
                model['input_output']['save_uvtables'],
                model['input_output']['iteration_diag'],
                iteration_diagnostics,
                model['input_output']['format']
                )

    logging.info('  Plotting results')

    figs, axes = [], []

    if model['plotting']['deprojec_plot']:
        deproj_fig, deproj_axes = make_figs.make_deprojection_fig(u, v, vis, weights, geom,
                                                         model['plotting']['bin_widths'],
                                                         model['plotting']['force_style'],
                                                         model['input_output']['save_prefix']
                                                         )

        figs.append(deproj_fig)
        axes.append(deproj_axes)

    if model['plotting']['quick_plot']:
        quick_fig, quick_axes = make_figs.make_quick_fig(u, v, vis, weights, sol,
                                                         model['plotting']['bin_widths'],
                                                         model['plotting']['distance'],
                                                         model['plotting']['plot_in_logx'],
                                                         model['plotting']['force_style'],
                                                         model['input_output']['save_prefix'],
                                                         model['plotting']['stretch'],
                                                         model['plotting']['gamma'],
                                                         model['plotting']['asinh_a']
                                                         )

        figs.append(quick_fig)
        axes.append(quick_axes)

    if model['plotting']['full_plot']:
        full_fig, full_axes = make_figs.make_full_fig(u, v, vis, weights, sol,
                                                      model['plotting']['bin_widths'],
                                                      model['hyperparameters']['alpha'],
                                                      model['hyperparameters']['wsmooth'],
                                                      model['plotting']['distance'],
                                                      model['plotting']['plot_in_logx'],
                                                      model['plotting']['force_style'],
                                                      model['input_output']['save_prefix'],
                                                      model['plotting']['norm_residuals'],
                                                      model['plotting']['stretch'],
                                                      model['plotting']['gamma'],
                                                      model['plotting']['asinh_a']

                                                      )

        figs.append(full_fig)
        axes.append(full_axes)

    if model['plotting']['diag_plot']:
        diag_fig, diag_axes, _ = make_figs.make_diag_fig(sol.r, sol.q,
                                                         iteration_diagnostics,
                                                         model['plotting']['iter_plot_range'],
                                                         model['plotting']['force_style'],
                                                         model['input_output']['save_prefix']
                                                         )

        figs.append(diag_fig)
        axes.append(diag_axes)

    if model['analysis']['compare_profile']:
        dat = np.genfromtxt(model['analysis']['compare_profile']).T

        if len(dat) not in [2,3,4]:
            raise ValueError("The file in your .json's `analysis` --> "
                             "`compare_profile` must have 2, 3 or 4 "
                             "columns: r [arcsec], I [Jy / sr], "
                             "negative uncertainty [Jy / sr] (optional), "
                             "positive uncertainty [Jy / sr] (optional, "
                             "assumed equal to negative uncertainty if not "
                             "provided).")

        r_clean, I_clean = dat[0], dat[1]
        if len(dat) == 3:
            lo_err_clean, hi_err_clean = dat[2], dat[2]
        elif len(dat) == 4:
            lo_err_clean, hi_err_clean = dat[2], dat[3]
        else:
            lo_err_clean, hi_err_clean = None, None
        clean_profile = {'r': r_clean, 'I': I_clean, 'lo_err': lo_err_clean,
                         'hi_err': hi_err_clean}

        mean_convolved = None
        if model['analysis']['clean_beam']['bmaj'] is not None:
            mean_convolved = utilities.convolve_profile(sol.r, sol.mean,
                                                        geom.inc, geom.PA,
                                                        model['analysis']['clean_beam'])

        clean_fig, clean_axes = make_figs.make_clean_comparison_fig(u, v, vis,
                                                                    weights, sol,
                                                                    clean_profile,
                                                                    model['plotting']['bin_widths'],
                                                                    model['plotting']['gamma'],
                                                                    mean_convolved,
                                                                    model['plotting']['distance'],
                                                                    model['plotting']['force_style'],
                                                                    model['input_output']['save_prefix']
                                                                    )

        figs.append(clean_fig)
        axes.append(clean_axes)

    return figs, axes, model