def test_custom_mid():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    mid_orig = "sklds"

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mid=mid_orig,
                      mode='w')
    lsi_res, exp_var = lsi.fit_transform(n_components=2, alpha=1.0)
    lsi._load_features()

    assert lsi.mid == mid_orig

    with pytest.raises(WrongParameter):
        lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mid=mid_orig,
                          mode='w')
        lsi.fit_transform(n_components=2, alpha=1.0)

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mid=mid_orig,
                      mode='fw')
    lsi.fit_transform(n_components=2, alpha=1.0)

    with pytest.raises(WrongParameter):
        lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mid='?',
                          mode='fw')
        lsi.fit_transform(n_components=2, alpha=1.0)
Example #2
0
def test_feature_extraction_storage():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir, file_pattern='.*\d.txt')
    db = pd.read_pickle(os.path.join(cache_dir, 'ediscovery_cache', uuid,
                                     'db'))
    assert 'file_path' not in db.columns
def fd_setup(**fe_options):
    basename = os.path.dirname(__file__)
    cache_dir = check_cache()
    data_dir = os.path.join(basename, "..", "..", "data", "ds_001", "raw")
    n_features = 110000
    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(n_features=n_features,
                    use_hashing=True,
                    stop_words='english',
                    **fe_options)
    fe.ingest(data_dir, file_pattern=r'.*\d.txt')
    return cache_dir, uuid, fe.filenames_, fe
Example #4
0
def test_search_filenames(use_hashing):
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(use_hashing=use_hashing)
    fe.ingest(data_dir, file_pattern='.*\d.txt')

    assert fe.db_ is not None

    for low, high, step in [(0, 1, 1), (0, 4, 1), (3, 1, -1)]:
        idx_slice = list(range(low, high, step))
        filenames_slice = [fe.filenames_[idx] for idx in idx_slice]
        idx0 = fe.db_._search_filenames(filenames_slice)
        assert_equal(idx0, idx_slice)
        assert_equal(filenames_slice, fe[idx0])

    with pytest.raises(NotFound):
        fe.db_._search_filenames(['DOES_NOT_EXIST.txt'])

    if not use_hashing:
        n_top_words = 5
        terms = fe.query_features([2, 3, 5], n_top_words=n_top_words)
        assert len(terms) == n_top_words

    fe.list_datasets()
Example #5
0
    def __init__(self,
                 cache_dir='/tmp/',
                 parent_id=None,
                 mid=None,
                 load_model=False,
                 mode='r'):
        if parent_id is None and mid is None:
            raise WrongParameter('At least one of parent_id or mid '
                                 'should be provided!')

        if self._wrapper_type == 'lsi' and self.mode in ['w', 'fw']:
            # lsi supports explicitly providing mid at creation
            if parent_id is None:
                raise WrongParameter(('parent_id={} must be provided for '
                                      'model creation!').format(parent_id))
            else:
                validate_mid(parent_id)
                self.pipeline = PipelineFinder.by_id(parent_id, cache_dir)
                if mid is not None:
                    validate_mid(mid)
                self.mid = mid
        else:
            if parent_id is None and mid is not None:
                validate_mid(mid)
                self.pipeline = PipelineFinder.by_id(mid, cache_dir).parent
                self.mid = mid
            elif parent_id is not None:
                validate_mid(parent_id)
                self.pipeline = PipelineFinder.by_id(parent_id, cache_dir)
                self.mid = None

        # this only affects LSI
        if mode not in ['r', 'w', 'fw']:
            raise WrongParameter(
                'mode={} must be one of "r", "w", "fw"'.format(mode))
        self.mode = mode

        # this is an alias that should be deprecated
        self.fe = FeatureVectorizer(cache_dir=cache_dir,
                                    dsid=self.pipeline['vectorizer'])

        self.model_dir = self.pipeline.get_path() / self._wrapper_type

        if self._wrapper_type == 'search':
            # no data need to be stored on disk
            return

        if not self.model_dir.exists():
            self.model_dir.mkdir()

        if self.mid is not None and self.mode == 'r':
            self._pars = self._load_pars()
        else:
            self._pars = None

        if load_model:
            if self.mid is not None and self.mode == 'r':
                self.cmod = self._load_model()
            else:
                self.cmod = None
def fd_setup():
    basename = os.path.dirname(__file__)
    cache_dir = check_cache()
    np.random.seed(1)
    data_dir = os.path.join(basename, "..", "..", "data", "ds_001", "raw")
    n_features = 110000
    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    dsid = fe.setup(n_features=n_features,
                    use_hashing=False,
                    stop_words='english',
                    min_df=0.1,
                    max_df=0.9)
    fe.ingest(data_dir, file_pattern=r'.*\d.txt')

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=dsid, mode='w')
    lsi.fit_transform(n_components=6)
    return cache_dir, dsid, fe.filenames_, lsi.mid
Example #7
0
def _list(args):
    cache_dir = _parse_cache_dir(args.cache_dir)
    fe = FeatureVectorizer(cache_dir)
    res = fe.list_datasets()
    res = sorted(res, key=lambda row: row['creation_date'], reverse=True)
    for row in res:
        print(' * Processed dataset {}'.format(row['id']))
        print('    - data_dir: {}'.format(row['data_dir']))
        print('    - creation_date: {}'.format(row['creation_date']))
        for method in ['lsi', 'categorizer', 'cluster', 'dupdet', 'threading']:
            dpath = os.path.join(fe.cache_dir, row['id'], method)
            if not os.path.exists(dpath):
                continue
            mid_list = os.listdir(dpath)
            if mid_list:
                print('     # {}'.format(method))
                for mid in mid_list:
                    print('       * {}'.format(mid))
        print(' ')
Example #8
0
def test_email_parsing():
    data_dir = os.path.join(basename, "..", "..", "data",
                            "fedora-devel-list-2008-October")
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    email_md = fe.parse_email_headers()
    assert len(fe.filenames_) == len(email_md)

    fe.delete()
def test_search_wrapper(kind):
    # check for syntax errors etc in the wrapper

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    vect_uuid = fe.setup()
    fe.ingest(data_dir, file_pattern=r'.*\d.txt')

    if kind == 'semantic':
        lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=vect_uuid, mode='w')
        lsi.fit_transform(n_components=20)
        parent_id = lsi.mid
    else:
        parent_id = vect_uuid

    sw = _SearchWrapper(cache_dir=cache_dir, parent_id=parent_id)
    dist = sw.search("so that I can reserve a room")
    assert dist.shape == (fe.n_samples_, )
    # document 1 found by
    # grep -rn "so that I can reserve a room"
    # freediscovery/data/ds_001/raw/
    assert dist.argmax() == 1
def test_lsi():

    cache_dir = check_cache()
    n_components = 2

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir, file_pattern=r'.*\d.txt')

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mode='w')
    lsi_res, exp_var = lsi.fit_transform(n_components=n_components, alpha=1.0)
    assert lsi_res.components_.shape[0] == 5
    assert lsi_res.components_.shape[1] == fe.n_features_
    assert lsi._load_pars() is not None
    lsi._load_model()
    X_lsi = lsi._load_features()

    assert_allclose(normalize(X_lsi), X_lsi)

    lsi.list_models()
    lsi.delete()
Example #11
0
def test_ingestion_csv():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    fe.setup(column_ids=[1, 3])
    fe.ingest(dataset_definition=[{
        'file_path':
        os.path.join(csv_data_dir, 'example.csv')
    }], )
    X = fe._load_features()
    assert X.shape[0] == 4
    assert len(fe.filenames_) == X.shape[0]
    assert X.shape[0] == fe.n_samples_
Example #12
0
def test_feature_extraction_weighting(weighting, use_hashing):
    cache_dir = check_cache()

    use_hashing = (use_hashing == 'hashed')

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(weighting=weighting, use_hashing=use_hashing)
    fe.ingest(data_dir, file_pattern='.*\d.txt')

    res2 = fe._load_features(uuid)
    assert isinstance(res2,  np.ndarray) or scipy.sparse.issparse(res2), \
        "not an array {}".format(res2)

    assert np.isfinite(res2.data).all()
    assert_allclose(normalize(res2).data, res2.data)  # data is l2 normalized

    fe.delete()
Example #13
0
def test_feature_extraction_cyrillic(use_hashing):
    data_dir = os.path.join(basename, "..", "..", "data", "ds_002", "raw")
    cache_dir = check_cache()
    use_hashing = (use_hashing == 'hashed')

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(use_hashing=use_hashing)
    fe.ingest(data_dir, file_pattern='.*\d.txt')

    res2 = fe._load_features(uuid)

    filenames = fe.filenames_
    fe._filenames = None
    filenames2 = fe.filenames_

    assert_equal(filenames2, filenames)
    assert isinstance(res2,  np.ndarray) or scipy.sparse.issparse(res2),\
        "not an array {}".format(res2)

    assert np.isfinite(res2.data).all()
    fe.delete()
Example #14
0
def test_ingestion_csv_wrong_params():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    fe.setup(column_ids=[1, 3])
    with pytest.raises(
            ValueError,
            match=".*can only be privided using `dataset_definition.*"):
        fe.ingest(csv_data_dir)

    with pytest.raises(ValueError,
                       match=".*one CSV can be provided at a time.*"):
        fe.ingest(dataset_definition=[
            {
                'file_path': os.path.join(csv_data_dir, 'example.csv')
            },
            {
                'file_path': os.path.join(csv_data_dir, 'example.csv')
            },
        ], )
Example #15
0
def test_feature_extraction_nfeatures(n_features, weighting, use_hashing):
    cache_dir = check_cache()

    use_hashing = (use_hashing == 'hashed')

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(n_features=n_features,
                    weighting=weighting,
                    use_hashing=use_hashing)
    fe.ingest(data_dir, file_pattern=r'.*\d.txt')

    res2 = fe._load_features(uuid)
    assert isinstance(res2,  np.ndarray) or scipy.sparse.issparse(res2), \
        "not an array {}".format(res2)

    assert np.isfinite(res2.data).all()

    assert res2.shape[1] == fe.n_features_

    fe.delete()
def test_lsi_remove_documents():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mode='w')
    lsi_res, exp_var = lsi.fit_transform(n_components=2, alpha=1.0)
    X_lsi = lsi._load_features()

    docs = DocumentIndex.from_folder(data_dir).data
    dataset_definition = docs[['document_id']].to_dict(orient='records')
    fe.remove([dataset_definition[2], dataset_definition[4]])

    X_lsi_new = lsi._load_features()
    assert X_lsi_new.shape[0] == X_lsi.shape[0] - 2
Example #17
0
def test_threading():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir=data_dir)
    fe.parse_email_headers()

    cat = _EmailThreadingWrapper(cache_dir=cache_dir, parent_id=uuid)

    tree = cat.thread()
    cat.get_params()

    tree_ref = [{
        'id':
        0,
        'parent':
        None,
        'children': [{
            'id': 1,
            'children': [],
            'parent': 0
        }, {
            'id':
            2,
            'parent':
            0,
            'children': [{
                'id': 3,
                'children': [],
                'parent': 2
            }, {
                'id': 4,
                'children': [],
                'parent': 2
            }]
        }]
    }]

    assert [el.to_dict() for el in tree] == tree_ref

    assert len(fe.filenames_) == sum([el.tree_size for el in tree])
    assert len(fe.filenames_) == 5
    assert len(tree[0].flatten()) == 5
def test_lsi_append_documents():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mode='w')
    lsi_res, exp_var = lsi.fit_transform(n_components=2, alpha=1.0)
    X_lsi = lsi._load_features()
    n_samples = fe.n_samples_

    docs = DocumentIndex.from_folder(data_dir).data
    docs['document_id'] += 10
    dataset_definition = docs[['file_path', 'document_id']].to_dict(orient='records')
    for row in dataset_definition:
        row['file_path'] = os.path.join(data_dir, row['file_path'])
    fe.append(dataset_definition)

    X_lsi_new = lsi._load_features()
    assert X_lsi_new.shape[0] == X_lsi.shape[0]*2
    assert_equal(X_lsi_new[:n_samples], X_lsi_new[:n_samples])
from freediscovery.metrics import categorization_score
from freediscovery.exceptions import OptionalDependencyMissing, WrongParameter
from freediscovery.tests.run_suite import check_cache

basename = Path(__file__).parent

cache_dir = check_cache()

EPSILON = 1e-4

data_dir = basename / ".." / ".." / "data" / "ds_001" / "raw"

ground_truth = parse_ground_truth_file(
    str(data_dir / ".." / "ground_truth_file.txt"))

fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
vect_uuid = fe.setup()
fe.ingest(str(data_dir), file_pattern='.*\d.txt')

lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=vect_uuid, mode='w')
lsi.fit_transform(n_components=6)

_test_cases = itertools.product([False, True], [
    "LinearSVC", "LogisticRegression", 'xgboost', "NearestNeighbor",
    "NearestCentroid"
], [None, 'fast'])

# 'MLPClassifier', 'ensemble-stacking' not supported in production the moment
_test_cases = filter(lambda x: not (x[1].startswith("Nearest") and x[2]),
                     _test_cases)
Example #20
0
def test_non_random_dsid():
    data_dir = os.path.join(basename, "..", "..", "data", "ds_002", "raw")
    cache_dir = check_cache()

    dsid = 'test-dataset'

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w', dsid=dsid)
    uuid = fe.setup()
    assert dsid == uuid
    fe.ingest(data_dir, file_pattern='.*\d.txt', vectorize=False)
    # writing with the same name fails
    with pytest.raises(WrongParameter):
        FeatureVectorizer(cache_dir=cache_dir, mode='w', dsid=dsid)

    FeatureVectorizer(cache_dir=cache_dir, mode='r', dsid=dsid)

    FeatureVectorizer(cache_dir=cache_dir, mode='fw', dsid=dsid)
    # special characters are not allowed
    with pytest.raises(WrongParameter):
        fh = FeatureVectorizer(cache_dir=cache_dir, mode='fw', dsid='?+ds$$')
        uuid = fh.setup()
Example #21
0
def test_ingestion_content():
    data_dir = Path(basename, "..", "..", "data", "ds_002", "raw")

    dd = []
    for idx, fname in enumerate(sorted(data_dir.glob('*txt'))):
        with fname.open('rt', encoding='utf-8') as fh:
            dd.append({'document_id': idx + 19, 'content': fh.read()})
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(dataset_definition=dd, vectorize=True)
    assert len(fe.filenames_) == 6
    assert fe.filenames_[0] == '000000000_0.txt'
    X = fe._load_features()
    assert X.shape[0] == 6
    assert fe.db_.data.shape[0] == len(fe.filenames_)

    fe2 = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    fe2.setup()
    fe2.ingest(data_dir=str(data_dir))

    X2 = fe2._load_features()
    assert X.shape == X2.shape
    assert_array_equal(X.indices, X2.indices)
    assert_array_equal(X.data, X2.data)
Example #22
0
def test_ingestion_batches():
    data_dir = os.path.join(basename, "..", "..", "data", "ds_002", "raw")
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    with pytest.raises(ValueError):
        fe.ingest(vectorize=True)  # no ingested files
    fe.ingest(data_dir, file_pattern='.*\d.txt', vectorize=False)
    fe.ingest(data_dir, file_pattern='.*\d.txt', vectorize=False)
    fe.ingest(data_dir, file_pattern='.*\d.txt', vectorize=False)

    fe.ingest(vectorize=True)

    assert fe.db_.data.shape[0] == len(fe.filenames_)
    assert len(fe.filenames_) == 6 * 3
    X = fe._load_features()
    assert X.shape[0] == 6 * 3

    with pytest.raises(ValueError):
        fe.ingest(vectorize=True)  # already vectorized
Example #23
0
def test_sampling_filenames():
    cache_dir = check_cache()

    fe_pars = {'weighting': 'bnn'}

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    with pytest.warns(UserWarning):
        # there is a warning because we don't use norm='l2'
        uuid = fe.setup(use_hashing=True, **fe_pars)
        fe.ingest(data_dir, file_pattern='.*\d.txt')
    X = fe._load_features(uuid)

    # don't use any sampling
    fes = _FeatureVectorizerSampled(cache_dir=cache_dir,
                                    dsid=uuid,
                                    sampling_filenames=None)
    X_s = fes._load_features(uuid)
    pars = fe.pars_
    fnames = fe.filenames_
    fnames_s = fes.filenames_
    assert_array_equal(fnames, fnames_s)
    assert_array_equal(X.data, X_s.data)
    assert fes.n_samples_ == len(fnames)

    fes = _FeatureVectorizerSampled(cache_dir=cache_dir,
                                    dsid=uuid,
                                    sampling_filenames=fnames[::-1])

    assert fes.sampling_index is not None
    X_s = fes._load_features(uuid)
    pars_s = fes.pars_
    fnames_s = fes.filenames_
    assert_array_equal(fnames[::-1], fnames_s)
    assert_array_equal(X[::-1, :].data, X_s.data)
    for key in pars:
        if key == 'filenames':
            assert pars[key][::-1] == pars_s[key]
        else:
            assert pars[key] == pars_s[key]

    # repeat twice the filenames
    fes = _FeatureVectorizerSampled(cache_dir=cache_dir,
                                    dsid=uuid,
                                    sampling_filenames=(fnames + fnames))

    assert fes.sampling_index is not None
    X_s = fes._load_features(uuid)
    pars_s = fes.pars_
    fnames_s = fes.filenames_
    assert_array_equal(fnames + fnames, fnames_s)
    assert_array_equal(X.data, X_s[:len(fnames)].data)
    assert_array_equal(X.data, X_s[len(fnames):].data)
    assert fes.n_samples_ == len(fnames) * 2
    # for key in pars:
    #    assert pars[key] == pars_s[key]

    # downsample the filenames
    N = len(fnames) // 2

    np.random.seed(1)

    idx = np.random.choice(fe.n_samples_, size=(N, ))
    fnames_s_in = np.array(fnames)[idx].tolist()

    fes = _FeatureVectorizerSampled(cache_dir=cache_dir,
                                    dsid=uuid,
                                    sampling_filenames=fnames_s_in)

    assert fes.sampling_index is not None
    X_s = fes._load_features(uuid)
    pars_s = fes.pars_
    fnames_s = fes.filenames_
    assert_array_equal(fnames_s_in, fnames_s)
    assert_array_equal(X[idx].data, X_s.data)
    assert fes.n_samples_ == N

    fe.delete()
Example #24
0
def test_remove_documents():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    X = fe._load_features(uuid)
    db = fe.db_.data
    filenames = fe.filenames_
    n_samples = len(fe.filenames_)

    docs = DocumentIndex.from_folder(data_dir).data
    dataset_definition = docs[['document_id']].to_dict(orient='records')
    fe.remove([dataset_definition[2], dataset_definition[4]])
    X_new = fe._load_features(uuid)
    assert X_new.shape[0] == X.shape[0] - 2
    assert fe.db_.data.shape[0] == db.shape[0] - 2
    assert len(fe.filenames_) == len(filenames) - 2

    dbn = fe.db_.data
    assert_equal(db.iloc[[0, 1, 3, 5]]['document_id'].values,
                 dbn['document_id'].values)
    # check that internal id is contiguous
    assert (np.diff(dbn.internal_id.values) == 1).all()

    # check the number of samples is consistent
    del fe._pars
    assert fe.n_samples_ == n_samples - 2

    fe.delete()
Example #25
0
def test_append_documents():
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup()
    fe.ingest(data_dir)

    X = fe._load_features(uuid)
    db = fe.db_
    filenames = fe.filenames_
    n_samples = len(fe.filenames_)

    docs = DocumentIndex.from_folder(data_dir).data
    docs['document_id'] += 10
    dataset_definition = docs[['file_path',
                               'document_id']].to_dict(orient='records')
    for row in dataset_definition:
        row['file_path'] = os.path.join(data_dir, row['file_path'])
    fe.append(dataset_definition)
    X_new = fe._load_features(uuid)
    assert X_new.shape[0] == X.shape[0] * 2
    assert fe.db_.data.shape[0] == db.data.shape[0] * 2
    assert len(fe.filenames_) == len(filenames) * 2

    dbn = fe.db_.data
    assert_equal(dbn.iloc[:n_samples]['document_id'].values,
                 dbn.iloc[n_samples:]['document_id'].values - 10)
    # check that internal id is contiguous
    assert (np.diff(dbn.internal_id.values) == 1).all()

    # check the number of samples is consistent
    del fe._pars
    assert fe.n_samples_ == n_samples * 2

    fe.delete()
Example #26
0
def test_df_filtering(use_hashing, min_df, max_df):
    cache_dir = check_cache()

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(min_df=min_df, max_df=max_df, use_hashing=use_hashing)
    fe.ingest(data_dir)

    X = fe._load_features(uuid)

    fe2 = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid2 = fe2.setup(use_hashing=use_hashing)
    fe2.ingest(data_dir)

    X2 = fe2._load_features(uuid2)

    if use_hashing:
        # min/max_df does not affect the number of features
        assert X.shape[1] == X2.shape[1]
    else:
        # min/max_df removes some features
        assert X.shape[1] < X2.shape[1]

    fe.delete()
def test_features_hashing(use_hashing, use_lsi, method):
    # check that models work both with and without hashing

    cache_dir = check_cache()

    n_features = 20000

    fe = FeatureVectorizer(cache_dir=cache_dir, mode='w')
    uuid = fe.setup(n_features=n_features, use_hashing=use_hashing)
    fe.ingest(data_dir, file_pattern='.*\d.txt')

    ground_truth = parse_ground_truth_file(os.path.join(data_dir,
                                           "..", "ground_truth_file.txt"))

    lsi = _LSIWrapper(cache_dir=cache_dir, parent_id=uuid, mode='w')
    lsi_res, exp_var = lsi.fit_transform(n_components=100)
    assert lsi._load_pars() is not None
    lsi._load_model()

    if method == 'Categorization':
        if use_lsi:
            parent_id = lsi.mid
            method = 'NearestNeighbor'
        else:
            parent_id = uuid
            method = 'LogisticRegression'
        cat = _CategorizerWrapper(cache_dir=cache_dir, parent_id=parent_id,
                                  cv_n_folds=2)
        cat.fe.db_.filenames_ = cat.fe.filenames_
        index = cat.fe.db_._search_filenames(ground_truth.file_path.values)

        try:
            coefs, Y_train = cat.fit(
                                    index,
                                    ground_truth.is_relevant.values,
                                    method=method
                                    )
        except OptionalDependencyMissing:
            raise SkipTest

        Y_pred, md = cat.predict()
        X_pred = np.arange(cat.fe.n_samples_, dtype='int')
        idx_gt = cat.fe.db_._search_filenames(ground_truth.file_path.values)

        scores = categorization_score(idx_gt,
                                      ground_truth.is_relevant.values,
                                      X_pred, np.argmax(Y_pred, axis=1))
        assert_allclose(scores['precision'], 1, rtol=0.5)
        assert_allclose(scores['recall'], 1, rtol=0.7)
        cat.delete()
    elif method == 'DuplicateDetection':
        dd = _DuplicateDetectionWrapper(cache_dir=cache_dir, parent_id=uuid)
        try:
            dd.fit()
        except ImportError:
            raise SkipTest
        cluster_id = dd.query(distance=10)
    elif method == 'Clustering':
        if not use_hashing:
            if use_lsi:
                parent_id = lsi.mid
                method = 'birch'
            else:
                parent_id = uuid
                method = 'k_means'
            cat = _ClusteringWrapper(cache_dir=cache_dir, parent_id=parent_id)
            cm = getattr(cat, method)
            labels = cm(2)

            htree = cat._get_htree(cat.pipeline.data)

            terms = cat.compute_labels(n_top_words=10)
        else:
            with pytest.raises(NotImplementedError):
                _ClusteringWrapper(cache_dir=cache_dir, parent_id=uuid)
    else:
        raise ValueError