class SaveTests(unittest.TestCase): def setUp(self): self.s = Signal() self.x = np.array([0, 1, 2, 3]) self.y = np.array([0, 1, 0, -1]) self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1) self.s.fft() self.s.freq_filter_Hilbert_complex() self.s.ifft() self.s.f.attrs['two'] = 2 # test attribute to verify attrs copied self.f_dst = h5py.File('.test2.h5', backing_store=False, driver='core') def test_save_pass_list_datasets(self): self.s.save(self.f_dst, ['x', 'y']) assert_array_equal(self.f_dst['x'][:], self.x) assert_array_equal(self.f_dst['y'][:], self.y) self.assertEqual(self.f_dst.attrs['two'], 2) def test_save_pass_string(self): self.s.save(self.f_dst, 'input') assert_array_equal(self.f_dst['x'][:], self.x[:]) assert_array_equal(self.f_dst['y'][:], self.y) self.assertEqual(self.f_dst.attrs['two'], 2) def tearDown(self): self.f_dst.close() self.s.close()
class HDF5LoadGeneral(unittest.TestCase): filename = '.general_format_h5_file.h5' def setUp(self): self.x = np.array([0, 1, 2]) self.y = np.array([0, 2, 4]) self.s = Signal() self.f = h5py.File(self.filename, driver='core', backing_store=False) self.f['time'] = self.x self.f['position'] = self.y def test_load_general_format_h5_x_y(self): self.s._load_hdf5_general(self.f, s_dataset='position', t_dataset='time', s_name='x', s_unit='nm') assert_allclose(self.s.f['x'][:], self.x) assert_allclose(self.s.f['y'][:], self.y) self.assertEqual(self.s.f['x'].attrs['step'], 1) self.assertEqual(self.s.f['y'].attrs['name'], 'x') self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]') def test_load_general_format_h5_y_dt(self): self.s._load_hdf5_general(self.f, s_dataset='position', dt=1, s_name='x', s_unit='nm') assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.s.f['y'][:], self.y) self.assertEqual(self.s.f['x'].attrs['step'], 1) self.assertEqual(self.s.f['y'].attrs['name'], 'x') self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]') def test_load_general_no_x_or_dt_specified(self): with self.assertRaises(ValueError): self.s._load_hdf5_general(self.f, s_dataset='position', s_name='x', s_unit='nm') def tearDown(self): self.f.close() self.s.close()
class SaveBeforeWorkupTest(unittest.TestCase): def setUp(self): self.s = Signal() self.x = np.array([0, 1, 2, 3]) self.y = np.array([0, 1, 0, -1]) self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1) self.f_dst = h5py.File('.test3.h5', backing_store=False, driver='core') def test_save_before_workup(self): self.s.save(self.f_dst, 'time_workup') assert_array_equal(self.f_dst['x'][:], self.x) assert_array_equal(self.f_dst['y'][:], self.y) def tearDown(self): self.f_dst.close() self.s.close()
class FFTOddPoints(unittest.TestCase): def setUp(self): self.x = np.array([0, 1, 0, -1, 0, 1, 0, -1, 0]) self.s = Signal() self.s.load_nparray(self.x, 'x', 'nm', 1) def test_ifft_odd_pts(self): self.s.fft() self.s.ifft() x_ifft_fft = self.s.f['workup/time/z'][:] x = self.x # Should give x back to within numerical rounding errors assert_allclose(x.real, x_ifft_fft.real, atol=1e-15) assert_allclose(x.imag, x_ifft_fft.imag, atol=1e-15) def tearDown(self): self.s.close()
class TestClose(unittest.TestCase): filename = '.TestClose.h5' def setUp(self): self.s = Signal(self.filename, mode='w', backing_store=True) self.s.load_nparray(np.arange(3), "x", "nm", 10E-6) self.s.close() def tearDown(self): silent_remove(self.filename) def test_close(self): """Verify closed object by testing one of the attributes""" self.snew = Signal() self.snew.open(self.filename) # print out the contents of the file nicely report = [] for key, val in self.snew.f.attrs.items(): report.append("{0}: {1}".format(key, val)) for item in self.snew.f: report.append("{}".format(self.snew.f[item].name)) for key, val in self.snew.f[item].attrs.items(): report.append(" {0}: {1}".format(key, val)) report_string = "\n".join(report) print("\nObjects in file .InitLoadSaveTests_1.h5") print(report_string) # test one of the attributes self.assertTrue(self.snew.f.attrs['source'], 'demodulate.py') self.snew.close()
class TestClose(unittest.TestCase): filename = '.TestClose.h5' def setUp(self): self.s = Signal(self.filename, mode='w', backing_store=True) self.s.load_nparray(np.arange(3),"x","nm",10E-6) self.s.close() def tearDown(self): silent_remove(self.filename) def test_close(self): """Verify closed object by testing one of the attributes""" self.snew = Signal() self.snew.open(self.filename) # print out the contents of the file nicely report = [] for key, val in self.snew.f.attrs.items(): report.append("{0}: {1}".format(key, val)) for item in self.snew.f: report.append("{}".format(self.snew.f[item].name)) for key, val in self.snew.f[item].attrs.items(): report.append(" {0}: {1}".format(key, val)) report_string = "\n".join(report) print("\nObjects in file .InitLoadSaveTests_1.h5") print(report_string) # test one of the attributes self.assertTrue(self.snew.f.attrs['source'],'demodulate.py') self.snew.close()
class HDF5LoadDefault(unittest.TestCase): filename = '.default_format_h5_file.h5' def setUp(self): self.f = h5py.File(self.filename, driver='core', backing_store=False) self.x = np.array([0, 1, 2]) self.y = np.array([0, 2, 4]) self.x_attrs = {'name': 't', 'unit': 's', 'label': 't [s]', 'label_latex': '$t \\: [\\mathrm{s}]$', 'help': 'time axis', 'initial': 0, 'step': 1} self.y_attrs = {'name': 'x', 'unit': 'nm', 'label': 'x [nm]', 'label_latex': '$x \: [\mathrm{nm}]$', 'help': 'cantilever amplitude', 'abscissa': 'x', 'n_avg': 1} self.f['x'] = self.x self.f['y'] = self.y update_attrs(self.f['x'].attrs, self.x_attrs) update_attrs(self.f['y'].attrs, self.y_attrs) self.s = Signal() def test_hdf5_general_all_attrs_specified(self): self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=False) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_dt(self): del self.f['x'].attrs['step'] self.s._load_hdf5_default(self.f, infer_dt=True, infer_attrs=False) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_label(self): del self.f['x'].attrs['label'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_abscissa(self): del self.f['y'].attrs['abscissa'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_y_labels(self): del self.f['y'].attrs['label'] del self.f['y'].attrs['label_latex'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def tearDown(self): self.f.close() self.s.close()
class HDF5LoadDefault(unittest.TestCase): filename = '.default_format_h5_file.h5' def setUp(self): self.f = h5py.File(self.filename, driver='core', backing_store=False) self.x = np.array([0, 1, 2]) self.y = np.array([0, 2, 4]) self.x_attrs = { 'name': 't', 'unit': 's', 'label': 't [s]', 'label_latex': '$t \\: [\\mathrm{s}]$', 'help': 'time axis', 'initial': 0, 'step': 1 } self.y_attrs = { 'name': 'x', 'unit': 'nm', 'label': 'x [nm]', 'label_latex': '$x \: [\mathrm{nm}]$', 'help': 'cantilever amplitude', 'abscissa': 'x', 'n_avg': 1 } self.f['x'] = self.x self.f['y'] = self.y update_attrs(self.f['x'].attrs, self.x_attrs) update_attrs(self.f['y'].attrs, self.y_attrs) self.s = Signal() def test_hdf5_general_all_attrs_specified(self): self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=False) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_dt(self): del self.f['x'].attrs['step'] self.s._load_hdf5_default(self.f, infer_dt=True, infer_attrs=False) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_label(self): del self.f['x'].attrs['label'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_abscissa(self): del self.f['y'].attrs['abscissa'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def test_hdf5_general_infer_missing_y_labels(self): del self.f['y'].attrs['label'] del self.f['y'].attrs['label_latex'] self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True) assert_array_equal(self.s.f['x'][:], self.x) assert_array_equal(self.f['y'][:], self.y) self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs) self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs) def tearDown(self): self.f.close() self.s.close()