Example #1
0
class SaveTests(unittest.TestCase):
    def setUp(self):
        self.s = Signal()
        self.x = np.array([0, 1, 2, 3])
        self.y = np.array([0, 1, 0, -1])
        self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1)
        self.s.fft()
        self.s.freq_filter_Hilbert_complex()
        self.s.ifft()
        self.s.f.attrs['two'] = 2  # test attribute to verify attrs copied
        self.f_dst = h5py.File('.test2.h5', backing_store=False, driver='core')

    def test_save_pass_list_datasets(self):
        self.s.save(self.f_dst, ['x', 'y'])
        assert_array_equal(self.f_dst['x'][:], self.x)
        assert_array_equal(self.f_dst['y'][:], self.y)
        self.assertEqual(self.f_dst.attrs['two'], 2)

    def test_save_pass_string(self):
        self.s.save(self.f_dst, 'input')
        assert_array_equal(self.f_dst['x'][:], self.x[:])
        assert_array_equal(self.f_dst['y'][:], self.y)
        self.assertEqual(self.f_dst.attrs['two'], 2)

    def tearDown(self):
        self.f_dst.close()
        self.s.close()
Example #2
0
class SaveTests(unittest.TestCase):
    def setUp(self):
        self.s = Signal()
        self.x = np.array([0, 1, 2, 3])
        self.y = np.array([0, 1, 0, -1])
        self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1)
        self.s.fft()
        self.s.freq_filter_Hilbert_complex()
        self.s.ifft()
        self.s.f.attrs['two'] = 2  # test attribute to verify attrs copied
        self.f_dst = h5py.File('.test2.h5', backing_store=False, driver='core')

    def test_save_pass_list_datasets(self):
        self.s.save(self.f_dst, ['x', 'y'])
        assert_array_equal(self.f_dst['x'][:], self.x)
        assert_array_equal(self.f_dst['y'][:], self.y)
        self.assertEqual(self.f_dst.attrs['two'], 2)

    def test_save_pass_string(self):
        self.s.save(self.f_dst, 'input')
        assert_array_equal(self.f_dst['x'][:], self.x[:])
        assert_array_equal(self.f_dst['y'][:], self.y)
        self.assertEqual(self.f_dst.attrs['two'], 2)

    def tearDown(self):
        self.f_dst.close()
        self.s.close()
Example #3
0
class HDF5LoadGeneral(unittest.TestCase):
    filename = '.general_format_h5_file.h5'

    def setUp(self):
        self.x = np.array([0, 1, 2])
        self.y = np.array([0, 2, 4])
        self.s = Signal()
        self.f = h5py.File(self.filename, driver='core', backing_store=False)
        self.f['time'] = self.x
        self.f['position'] = self.y

    def test_load_general_format_h5_x_y(self):
        self.s._load_hdf5_general(self.f,
                                  s_dataset='position',
                                  t_dataset='time',
                                  s_name='x',
                                  s_unit='nm')

        assert_allclose(self.s.f['x'][:], self.x)
        assert_allclose(self.s.f['y'][:], self.y)

        self.assertEqual(self.s.f['x'].attrs['step'], 1)
        self.assertEqual(self.s.f['y'].attrs['name'], 'x')
        self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]')

    def test_load_general_format_h5_y_dt(self):
        self.s._load_hdf5_general(self.f,
                                  s_dataset='position',
                                  dt=1,
                                  s_name='x',
                                  s_unit='nm')

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.s.f['y'][:], self.y)

        self.assertEqual(self.s.f['x'].attrs['step'], 1)
        self.assertEqual(self.s.f['y'].attrs['name'], 'x')
        self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]')

    def test_load_general_no_x_or_dt_specified(self):
        with self.assertRaises(ValueError):
            self.s._load_hdf5_general(self.f,
                                      s_dataset='position',
                                      s_name='x',
                                      s_unit='nm')

    def tearDown(self):
        self.f.close()
        self.s.close()
Example #4
0
class SaveBeforeWorkupTest(unittest.TestCase):
    def setUp(self):
        self.s = Signal()
        self.x = np.array([0, 1, 2, 3])
        self.y = np.array([0, 1, 0, -1])
        self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1)
        self.f_dst = h5py.File('.test3.h5', backing_store=False, driver='core')

    def test_save_before_workup(self):
        self.s.save(self.f_dst, 'time_workup')
        assert_array_equal(self.f_dst['x'][:], self.x)
        assert_array_equal(self.f_dst['y'][:], self.y)

    def tearDown(self):
        self.f_dst.close()
        self.s.close()
Example #5
0
class SaveBeforeWorkupTest(unittest.TestCase):
    def setUp(self):
        self.s = Signal()
        self.x = np.array([0, 1, 2, 3])
        self.y = np.array([0, 1, 0, -1])
        self.s.load_nparray([0, 1, 0, -1], 'signal', 'm', 1)
        self.f_dst = h5py.File('.test3.h5', backing_store=False, driver='core')


    def test_save_before_workup(self):
        self.s.save(self.f_dst, 'time_workup')
        assert_array_equal(self.f_dst['x'][:], self.x)
        assert_array_equal(self.f_dst['y'][:], self.y)

    def tearDown(self):
        self.f_dst.close()
        self.s.close()
Example #6
0
class FFTOddPoints(unittest.TestCase):
    def setUp(self):
        self.x = np.array([0, 1, 0, -1, 0, 1, 0, -1, 0])
        self.s = Signal()
        self.s.load_nparray(self.x, 'x', 'nm', 1)

    def test_ifft_odd_pts(self):
        self.s.fft()
        self.s.ifft()
        x_ifft_fft = self.s.f['workup/time/z'][:]
        x = self.x
        # Should give x back to within numerical rounding errors
        assert_allclose(x.real, x_ifft_fft.real, atol=1e-15)
        assert_allclose(x.imag, x_ifft_fft.imag, atol=1e-15)

    def tearDown(self):
        self.s.close()
Example #7
0
class FFTOddPoints(unittest.TestCase):
    def setUp(self):
        self.x = np.array([0, 1, 0, -1, 0, 1, 0, -1, 0])
        self.s = Signal()
        self.s.load_nparray(self.x, 'x', 'nm', 1)

    def test_ifft_odd_pts(self):
        self.s.fft()
        self.s.ifft()
        x_ifft_fft = self.s.f['workup/time/z'][:]
        x = self.x
        # Should give x back to within numerical rounding errors
        assert_allclose(x.real, x_ifft_fft.real, atol=1e-15)
        assert_allclose(x.imag, x_ifft_fft.imag, atol=1e-15)

    def tearDown(self):
        self.s.close()
Example #8
0
class HDF5LoadGeneral(unittest.TestCase):
    filename = '.general_format_h5_file.h5'

    def setUp(self):
        self.x = np.array([0, 1, 2])
        self.y = np.array([0, 2, 4])
        self.s = Signal()
        self.f = h5py.File(self.filename, driver='core',
                           backing_store=False)
        self.f['time'] = self.x
        self.f['position'] = self.y

    def test_load_general_format_h5_x_y(self):
        self.s._load_hdf5_general(self.f, s_dataset='position',
                                  t_dataset='time', s_name='x', s_unit='nm')

        assert_allclose(self.s.f['x'][:], self.x)
        assert_allclose(self.s.f['y'][:], self.y)

        self.assertEqual(self.s.f['x'].attrs['step'], 1)
        self.assertEqual(self.s.f['y'].attrs['name'], 'x')
        self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]')

    def test_load_general_format_h5_y_dt(self):
        self.s._load_hdf5_general(self.f, s_dataset='position',
                                  dt=1, s_name='x', s_unit='nm')

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.s.f['y'][:], self.y)

        self.assertEqual(self.s.f['x'].attrs['step'], 1)
        self.assertEqual(self.s.f['y'].attrs['name'], 'x')
        self.assertEqual(self.s.f['y'].attrs['label'], 'x [nm]')

    def test_load_general_no_x_or_dt_specified(self):
        with self.assertRaises(ValueError):
            self.s._load_hdf5_general(self.f, s_dataset='position', s_name='x',
                                      s_unit='nm')

    def tearDown(self):
        self.f.close()
        self.s.close()
Example #9
0
class TestClose(unittest.TestCase):
    filename = '.TestClose.h5'

    def setUp(self):
        self.s = Signal(self.filename, mode='w', backing_store=True)
        self.s.load_nparray(np.arange(3), "x", "nm", 10E-6)
        self.s.close()

    def tearDown(self):
        silent_remove(self.filename)

    def test_close(self):
        """Verify closed object by testing one of the attributes"""

        self.snew = Signal()
        self.snew.open(self.filename)

        # print out the contents of the file nicely

        report = []

        for key, val in self.snew.f.attrs.items():
            report.append("{0}: {1}".format(key, val))

        for item in self.snew.f:

            report.append("{}".format(self.snew.f[item].name))
            for key, val in self.snew.f[item].attrs.items():
                report.append("    {0}: {1}".format(key, val))

        report_string = "\n".join(report)

        print("\nObjects in file .InitLoadSaveTests_1.h5")
        print(report_string)

        # test one of the attributes

        self.assertTrue(self.snew.f.attrs['source'], 'demodulate.py')
        self.snew.close()
Example #10
0
class TestClose(unittest.TestCase):
    filename = '.TestClose.h5'
    def setUp(self):
        self.s = Signal(self.filename,  mode='w', backing_store=True)
        self.s.load_nparray(np.arange(3),"x","nm",10E-6)
        self.s.close()

    def tearDown(self):
        silent_remove(self.filename)

    def test_close(self):
        """Verify closed object by testing one of the attributes"""
        
        self.snew = Signal()
        self.snew.open(self.filename)
        
        # print out the contents of the file nicely        
                                
        report = []
        
        for key, val in self.snew.f.attrs.items():
            report.append("{0}: {1}".format(key, val))
        
        for item in self.snew.f:
            
            report.append("{}".format(self.snew.f[item].name))
            for key, val in self.snew.f[item].attrs.items():
                report.append("    {0}: {1}".format(key, val))
        
        report_string = "\n".join(report)
        
        print("\nObjects in file .InitLoadSaveTests_1.h5")
        print(report_string)

        # test one of the attributes

        self.assertTrue(self.snew.f.attrs['source'],'demodulate.py')
        self.snew.close()
Example #11
0
class HDF5LoadDefault(unittest.TestCase):
    filename = '.default_format_h5_file.h5'

    def setUp(self):
        self.f = h5py.File(self.filename, driver='core',
                           backing_store=False)
        self.x = np.array([0, 1, 2])
        self.y = np.array([0, 2, 4])

        self.x_attrs = {'name': 't',
                        'unit': 's',
                        'label': 't [s]',
                        'label_latex': '$t \\: [\\mathrm{s}]$',
                        'help': 'time axis',
                        'initial': 0,
                        'step': 1}

        self.y_attrs = {'name': 'x',
                        'unit': 'nm',
                        'label': 'x [nm]',
                        'label_latex': '$x \: [\mathrm{nm}]$',
                        'help': 'cantilever amplitude',
                        'abscissa': 'x',
                        'n_avg': 1}

        self.f['x'] = self.x
        self.f['y'] = self.y

        update_attrs(self.f['x'].attrs, self.x_attrs)
        update_attrs(self.f['y'].attrs, self.y_attrs)

        self.s = Signal()

    def test_hdf5_general_all_attrs_specified(self):
        self.s._load_hdf5_default(self.f, infer_dt=False,
                                  infer_attrs=False)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_dt(self):
        del self.f['x'].attrs['step']

        self.s._load_hdf5_default(self.f, infer_dt=True,
                                  infer_attrs=False)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_label(self):
        del self.f['x'].attrs['label']

        self.s._load_hdf5_default(self.f, infer_dt=False,
                                  infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_abscissa(self):
        del self.f['y'].attrs['abscissa']

        self.s._load_hdf5_default(self.f, infer_dt=False,
                                  infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_y_labels(self):
        del self.f['y'].attrs['label']
        del self.f['y'].attrs['label_latex']

        self.s._load_hdf5_default(self.f, infer_dt=False,
                                  infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def tearDown(self):
        self.f.close()
        self.s.close()
Example #12
0
class HDF5LoadDefault(unittest.TestCase):
    filename = '.default_format_h5_file.h5'

    def setUp(self):
        self.f = h5py.File(self.filename, driver='core', backing_store=False)
        self.x = np.array([0, 1, 2])
        self.y = np.array([0, 2, 4])

        self.x_attrs = {
            'name': 't',
            'unit': 's',
            'label': 't [s]',
            'label_latex': '$t \\: [\\mathrm{s}]$',
            'help': 'time axis',
            'initial': 0,
            'step': 1
        }

        self.y_attrs = {
            'name': 'x',
            'unit': 'nm',
            'label': 'x [nm]',
            'label_latex': '$x \: [\mathrm{nm}]$',
            'help': 'cantilever amplitude',
            'abscissa': 'x',
            'n_avg': 1
        }

        self.f['x'] = self.x
        self.f['y'] = self.y

        update_attrs(self.f['x'].attrs, self.x_attrs)
        update_attrs(self.f['y'].attrs, self.y_attrs)

        self.s = Signal()

    def test_hdf5_general_all_attrs_specified(self):
        self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=False)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_dt(self):
        del self.f['x'].attrs['step']

        self.s._load_hdf5_default(self.f, infer_dt=True, infer_attrs=False)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_label(self):
        del self.f['x'].attrs['label']

        self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_abscissa(self):
        del self.f['y'].attrs['abscissa']

        self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def test_hdf5_general_infer_missing_y_labels(self):
        del self.f['y'].attrs['label']
        del self.f['y'].attrs['label_latex']

        self.s._load_hdf5_default(self.f, infer_dt=False, infer_attrs=True)

        assert_array_equal(self.s.f['x'][:], self.x)
        assert_array_equal(self.f['y'][:], self.y)
        self.assertEqual(dict(self.s.f['x'].attrs), self.x_attrs)
        self.assertEqual(dict(self.s.f['y'].attrs), self.y_attrs)

    def tearDown(self):
        self.f.close()
        self.s.close()