Example #1
0
    def start(self) -> None:
        self.random_state = self._set_random_state(
            self.config.get('hyperopt_random_state', None))
        logger.info(f"Using optimizer random state: {self.random_state}")
        self.hyperopt_table_header = -1
        # Initialize spaces ...
        self.init_spaces()

        self.prepare_hyperopt_data()

        # We don't need exchange instance anymore while running hyperopt
        self.backtesting.exchange.close()
        self.backtesting.exchange._api = None  # type: ignore
        self.backtesting.exchange._api_async = None  # type: ignore
        # self.backtesting.exchange = None  # type: ignore
        self.backtesting.pairlists = None  # type: ignore

        cpus = cpu_count()
        logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
        config_jobs = self.config.get('hyperopt_jobs', -1)
        logger.info(f'Number of parallel jobs set as: {config_jobs}')

        self.opt = self.get_optimizer(self.dimensions, config_jobs)

        if self.print_colorized:
            colorama_init(autoreset=True)

        try:
            with Parallel(n_jobs=config_jobs) as parallel:
                jobs = parallel._effective_n_jobs()
                logger.info(
                    f'Effective number of parallel workers used: {jobs}')

                # Define progressbar
                if self.print_colorized:
                    widgets = [
                        ' [Epoch ',
                        progressbar.Counter(),
                        ' of ',
                        str(self.total_epochs),
                        ' (',
                        progressbar.Percentage(),
                        ')] ',
                        progressbar.Bar(marker=progressbar.AnimatedMarker(
                            fill='\N{FULL BLOCK}',
                            fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
                            marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
                        )),
                        ' [',
                        progressbar.ETA(),
                        ', ',
                        progressbar.Timer(),
                        ']',
                    ]
                else:
                    widgets = [
                        ' [Epoch ',
                        progressbar.Counter(),
                        ' of ',
                        str(self.total_epochs),
                        ' (',
                        progressbar.Percentage(),
                        ')] ',
                        progressbar.Bar(marker=progressbar.AnimatedMarker(
                            fill='\N{FULL BLOCK}', )),
                        ' [',
                        progressbar.ETA(),
                        ', ',
                        progressbar.Timer(),
                        ']',
                    ]
                with progressbar.ProgressBar(max_value=self.total_epochs,
                                             redirect_stdout=False,
                                             redirect_stderr=False,
                                             widgets=widgets) as pbar:
                    EVALS = ceil(self.total_epochs / jobs)
                    for i in range(EVALS):
                        # Correct the number of epochs to be processed for the last
                        # iteration (should not exceed self.total_epochs in total)
                        n_rest = (i + 1) * jobs - self.total_epochs
                        current_jobs = jobs - n_rest if n_rest > 0 else jobs

                        asked = self.opt.ask(n_points=current_jobs)
                        f_val = self.run_optimizer_parallel(parallel, asked, i)
                        self.opt.tell(asked, [v['loss'] for v in f_val])

                        # Calculate progressbar outputs
                        for j, val in enumerate(f_val):
                            # Use human-friendly indexes here (starting from 1)
                            current = i * jobs + j + 1
                            val['current_epoch'] = current
                            val['is_initial_point'] = current <= INITIAL_POINTS

                            logger.debug(f"Optimizer epoch evaluated: {val}")

                            is_best = HyperoptTools.is_best_loss(
                                val, self.current_best_loss)
                            # This value is assigned here and not in the optimization method
                            # to keep proper order in the list of results. That's because
                            # evaluations can take different time. Here they are aligned in the
                            # order they will be shown to the user.
                            val['is_best'] = is_best
                            self.print_results(val)

                            if is_best:
                                self.current_best_loss = val['loss']
                                self.current_best_epoch = val

                            self._save_result(val)

                            pbar.update(current)

        except KeyboardInterrupt:
            print('User interrupted..')

        logger.info(
            f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
            f"saved to '{self.results_file}'.")

        if self.current_best_epoch:
            HyperoptTools.try_export_params(
                self.config, self.backtesting.strategy.get_strategy_name(),
                self.current_best_epoch)

            HyperoptTools.show_epoch_details(self.current_best_epoch,
                                             self.total_epochs,
                                             self.print_json)
        else:
            # This is printed when Ctrl+C is pressed quickly, before first epochs have
            # a chance to be evaluated.
            print("No epochs evaluated yet, no best result.")
Example #2
0
    def start(self) -> None:
        self.random_state = self._set_random_state(
            self.config.get('hyperopt_random_state', None))
        logger.info(f"Using optimizer random state: {self.random_state}")
        self.hyperopt_table_header = -1
        data, timerange = self.backtesting.load_bt_data()
        logger.info("Dataload complete. Calculating indicators")
        preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)

        # Trim startup period from analyzed dataframe
        for pair, df in preprocessed.items():
            preprocessed[pair] = trim_dataframe(
                df,
                timerange,
                startup_candles=self.backtesting.required_startup)
        min_date, max_date = get_timerange(preprocessed)

        logger.info(
            f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days)..')

        dump(preprocessed, self.data_pickle_file)

        # We don't need exchange instance anymore while running hyperopt
        self.backtesting.exchange.close()
        self.backtesting.exchange._api = None  # type: ignore
        self.backtesting.exchange._api_async = None  # type: ignore
        # self.backtesting.exchange = None  # type: ignore
        self.backtesting.pairlists = None  # type: ignore
        self.backtesting.strategy.dp = None  # type: ignore
        IStrategy.dp = None  # type: ignore

        cpus = cpu_count()
        logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
        config_jobs = self.config.get('hyperopt_jobs', -1)
        logger.info(f'Number of parallel jobs set as: {config_jobs}')

        self.dimensions: List[Dimension] = self.hyperopt_space()
        self.opt = self.get_optimizer(self.dimensions, config_jobs)

        if self.print_colorized:
            colorama_init(autoreset=True)

        try:
            with Parallel(n_jobs=config_jobs) as parallel:
                jobs = parallel._effective_n_jobs()
                logger.info(
                    f'Effective number of parallel workers used: {jobs}')

                # Define progressbar
                if self.print_colorized:
                    widgets = [
                        ' [Epoch ',
                        progressbar.Counter(),
                        ' of ',
                        str(self.total_epochs),
                        ' (',
                        progressbar.Percentage(),
                        ')] ',
                        progressbar.Bar(marker=progressbar.AnimatedMarker(
                            fill='\N{FULL BLOCK}',
                            fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
                            marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
                        )),
                        ' [',
                        progressbar.ETA(),
                        ', ',
                        progressbar.Timer(),
                        ']',
                    ]
                else:
                    widgets = [
                        ' [Epoch ',
                        progressbar.Counter(),
                        ' of ',
                        str(self.total_epochs),
                        ' (',
                        progressbar.Percentage(),
                        ')] ',
                        progressbar.Bar(marker=progressbar.AnimatedMarker(
                            fill='\N{FULL BLOCK}', )),
                        ' [',
                        progressbar.ETA(),
                        ', ',
                        progressbar.Timer(),
                        ']',
                    ]
                with progressbar.ProgressBar(max_value=self.total_epochs,
                                             redirect_stdout=False,
                                             redirect_stderr=False,
                                             widgets=widgets) as pbar:
                    EVALS = ceil(self.total_epochs / jobs)
                    for i in range(EVALS):
                        # Correct the number of epochs to be processed for the last
                        # iteration (should not exceed self.total_epochs in total)
                        n_rest = (i + 1) * jobs - self.total_epochs
                        current_jobs = jobs - n_rest if n_rest > 0 else jobs

                        asked = self.opt.ask(n_points=current_jobs)
                        f_val = self.run_optimizer_parallel(parallel, asked, i)
                        self.opt.tell(asked, [v['loss'] for v in f_val])

                        # Calculate progressbar outputs
                        for j, val in enumerate(f_val):
                            # Use human-friendly indexes here (starting from 1)
                            current = i * jobs + j + 1
                            val['current_epoch'] = current
                            val['is_initial_point'] = current <= INITIAL_POINTS

                            logger.debug(f"Optimizer epoch evaluated: {val}")

                            is_best = HyperoptTools.is_best_loss(
                                val, self.current_best_loss)
                            # This value is assigned here and not in the optimization method
                            # to keep proper order in the list of results. That's because
                            # evaluations can take different time. Here they are aligned in the
                            # order they will be shown to the user.
                            val['is_best'] = is_best
                            self.print_results(val)

                            if is_best:
                                self.current_best_loss = val['loss']
                            self.epochs.append(val)

                            # Save results after each best epoch and every 100 epochs
                            if is_best or current % 100 == 0:
                                self._save_results()

                            pbar.update(current)

        except KeyboardInterrupt:
            print('User interrupted..')

        self._save_results()
        logger.info(
            f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
            f"saved to '{self.results_file}'.")

        if self.epochs:
            sorted_epochs = sorted(self.epochs, key=itemgetter('loss'))
            best_epoch = sorted_epochs[0]
            HyperoptTools.print_epoch_details(best_epoch, self.total_epochs,
                                              self.print_json)
        else:
            # This is printed when Ctrl+C is pressed quickly, before first epochs have
            # a chance to be evaluated.
            print("No epochs evaluated yet, no best result.")