def process_fig2p6(n_diracs, seed, period, H_tot, freqs, center_freq, bw, n_cycles, bwr, samp_freq): ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # critical sampling parameters samp_bw = (2 * n_diracs + 1) / period # sample y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) # estimate FS coeff fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot) # FRI recovery ann_filt = compute_ann_filt(fs_coeff_hat, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period) # compute errors tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) resynth_err = compute_srr_db(y_rf, y_rf_resynth) return tk_err, resynth_err
def process_fig2p14(n_diracs, seed, period, H_clean, freqs, idft_trunc, samp_bw, center_freq, bw, n_cycles, bwr, samp_freq, snr_db, max_ini, cadzow_iter, oversample_fact): ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) # add noise H_tot = add_noise(H_clean, snr_db, seed=seed) """ Cadzow + TLS """ # estimate FS coefficients of sum of diracs fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot) # denoise and recover parameters fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) """ GenFRI, denoise and recover parameters SIMULATANEOUSLY """ G = idft_trunc * H_tot fs_coeff_gen, min_error, c_opt, ini = gen_fri(G, y_samp, n_diracs, stop_cri='max_iter', max_ini=max_ini, seed=seed) tk_hat_gen = estimate_time_param(c_opt, period) ck_hat_gen = estimate_amplitudes(fs_coeff_gen, freqs, tk_hat_gen, period) """ Evaluate """ _tk_err = compute_srr_db_points(tk, tk_hat) _tk_err_gen = compute_srr_db_points(tk, tk_hat_gen) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err = compute_srr_db(y_rf, y_rf_resynth) y_rf_resynth_gen, t_rf = sample_rf(ck_hat_gen, tk_hat_gen, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err_gen = compute_srr_db(y_rf, y_rf_resynth_gen) return _tk_err, _sig_err, _tk_err_gen, _sig_err_gen
def process_noisy_samples(n_diracs, seed, period, H_tot, freqs, center_freq, bw, n_cycles, bwr, samp_freq, snr_db, cadzow_iter, oversample_fact): """ Fig. 2.8-2.9 """ ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # oversample samp_bw = (2 * oversample_fact * n_diracs + 1) / period y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) y_noisy = add_noise(y_samp, snr_db, seed=seed) # estimate fourier coefficients fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot) # denoising + recovery fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) # compute errors _tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err = compute_srr_db(y_rf, y_rf_resynth) return _tk_err, _sig_err
""" Estimate FS coefficients of sum of diracs """ freqs_fft = np.fft.fftfreq(n_samples, Ts) increasing_order = np.argsort(freqs_fft) freqs_fft = freqs_fft[increasing_order] Y = (np.fft.fft(y_samp))[increasing_order] / n_samples # equalize freqs = freqs_fft + center_freq H_tot = total_freq_response(freqs, center_freq, bw, n_cycles, bwr) fs_coeff_hat = Y / H_tot """ FRI recovery """ ann_filt = compute_ann_filt(fs_coeff_hat, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period) """ Evaluate """ evaluate_recovered_param(ck, tk, ck_hat, tk_hat) """ Plot measured data, alongside typical RF data """ y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) if viz: """rf data + pulse locations""" time_scal = 1e5
y_samp_demod = np.exp(-1j * 2 * np.pi * center_freq * t_samp) * y_samp Y_shift = np.fft.fft(y_samp_demod) Y_lpf = np.zeros(Y_shift.shape, dtype=np.complex) Y_lpf[fs_ind_base] = Y_shift[fs_ind_base] y_samp_lpf = np.fft.ifft(Y_lpf) y_samp_sub = y_samp_lpf[sub_idx] # TGC y_samp_sub = y_samp_sub * atten # recovery fs_coeff_hat = estimate_fourier_coeff(y_samp_sub, t_samp_sub, H=H_tot) fs_coeff_hat_clean = cadzow_denoising(fs_coeff_hat, K, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_hat_clean, K) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_hat_clean, fs_ind / period, tk_hat, period) # evaluate y_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw_pulse, n_cycles)[0] srr = compute_srr_db(y_samp, y_rf) print("SRR : %f dB" % srr) rx_echoes[chan_idx] = tk_hat amplitudes[chan_idx] = ck_hat tot_time = time.time() - start_time print("TOTAL TIME : %f min" % (tot_time / 60))
def process_fig2p10(n_diracs, period, snr_db, center_freq, bw, n_cycles, bwr, samp_freq, cadzow_iter, oversample_fact, viz=False, seed=0): """ Fig. 2.8-2.9 """ # create FRI parameters ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # set oversampling M = oversample_fact * n_diracs n_samples = 2 * M + 1 samp_bw = n_samples / period Ts = 1 / samp_bw # oversample y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) y_noisy = add_noise(y_samp, snr_db, seed=seed) # estimate fourier coefficients freqs_fft = np.fft.fftfreq(n_samples, Ts) increasing_order = np.argsort(freqs_fft) freqs_fft = freqs_fft[increasing_order] freqs = freqs_fft + center_freq H_tot = total_freq_response(freqs, center_freq, bw, n_cycles, bwr) fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot) # denoising + recovery fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) # compute errors tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) sig_err = compute_srr_db(y_rf, y_rf_resynth) print() print("%d Diracs, %.02fx oversampling:" % (n_diracs, oversample_fact)) print("Locations SRR : %.02f dB" % tk_err) print("Resynthesized error : %.02fdB" % sig_err) """visualize""" if viz: import matplotlib.pyplot as plt time_scal = 1e5 plt.figure() baseline = plt.stem(time_scal * tk, ck, 'g', markerfmt='go', label="True")[2] plt.setp(baseline, color='g') baseline.set_xdata([0, time_scal * period]) baseline = plt.stem(time_scal * tk_hat, ck_hat, 'r', markerfmt='r^', label="Estimate")[2] plt.setp(baseline, color='r') baseline.set_xdata(([0, time_scal * period])) plt.xlabel("Time [%s seconds]" % str(1 / time_scal)) plt.xlim([0, time_scal * period]) plt.legend(loc='lower right') plt.grid() plt.tight_layout() ax = plt.gca() ax.axes.yaxis.set_ticklabels([]) # resynthesized signal plt.figure() plt.plot(time_scal * t_rf, y_rf, label="True", alpha=0.65) plt.plot(time_scal * t_rf, y_rf_resynth, label="Estimate", alpha=0.65) plt.xlim([0, time_scal * period]) plt.grid() plt.xlabel("Time [%s seconds]" % str(1 / time_scal)) plt.tight_layout() plt.legend(loc='lower right') ax = plt.gca() ax.axes.yaxis.set_ticklabels([])
pos=True) """ Oversample in frequency with cadzow denoising + genfri """ stop_cri = 'max_iter' max_ini = 7 cadzow_iter = 20 oversample_freq = 5 # sample y_samp, t_samp, fs_ind = sample_ideal_project( ck, tk, period, oversample_freq=oversample_freq, K=K_rec) # standard FRI with cadzow denoising fs_coeff = estimate_fourier_coeff(y_samp, t_samp, fs_ind) fs_coeff = cadzow_denoising(fs_coeff, K_rec, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff, K_rec) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff, fs_ind / period, tk_hat, period) # GenFRI, first build forward mapping freqs_grid, t_samp_grid = np.meshgrid(fs_ind / period, t_samp) G = np.exp(2j * np.pi * freqs_grid * t_samp_grid) warnings.filterwarnings("ignore") fs_coeff_gen, min_error, c_opt, ini = gen_fri(G, y_samp, K_rec, max_ini=max_ini, stop_cri=stop_cri, seed=seed) warnings.filterwarnings("default") tk_hat_gen = estimate_time_param(c_opt, period)