Example #1
0
def process_fig2p6(n_diracs, seed, period, H_tot, freqs, center_freq, bw,
                   n_cycles, bwr, samp_freq):

    ck, tk = create_pulse_param(n_diracs, period=period, seed=seed)

    # critical sampling parameters
    samp_bw = (2 * n_diracs + 1) / period

    # sample
    y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw,
                               n_cycles, bwr)

    # estimate FS coeff
    fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot)

    # FRI recovery
    ann_filt = compute_ann_filt(fs_coeff_hat, n_diracs)
    tk_hat = estimate_time_param(ann_filt, period)
    ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period)

    # compute errors
    tk_err = compute_srr_db_points(tk, tk_hat)

    y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw,
                           n_cycles, bwr)
    y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq,
                                   center_freq, bw, n_cycles, bwr)
    resynth_err = compute_srr_db(y_rf, y_rf_resynth)

    return tk_err, resynth_err
Example #2
0
def process_fig2p14(n_diracs, seed, period, H_clean, freqs, idft_trunc,
                    samp_bw, center_freq, bw, n_cycles, bwr, samp_freq, snr_db,
                    max_ini, cadzow_iter, oversample_fact):

    ck, tk = create_pulse_param(n_diracs, period=period, seed=seed)
    y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw,
                               n_cycles, bwr)

    # add noise
    H_tot = add_noise(H_clean, snr_db, seed=seed)
    """ Cadzow + TLS """
    # estimate FS coefficients of sum of diracs
    fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot)

    # denoise and recover parameters
    fs_coeff_clean = cadzow_denoising(fs_coeff_hat,
                                      n_diracs,
                                      n_iter=cadzow_iter)
    ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs)
    tk_hat = estimate_time_param(ann_filt, period)
    ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period)
    """ GenFRI, denoise and recover parameters SIMULATANEOUSLY """
    G = idft_trunc * H_tot
    fs_coeff_gen, min_error, c_opt, ini = gen_fri(G,
                                                  y_samp,
                                                  n_diracs,
                                                  stop_cri='max_iter',
                                                  max_ini=max_ini,
                                                  seed=seed)
    tk_hat_gen = estimate_time_param(c_opt, period)
    ck_hat_gen = estimate_amplitudes(fs_coeff_gen, freqs, tk_hat_gen, period)
    """
    Evaluate 
    """
    _tk_err = compute_srr_db_points(tk, tk_hat)
    _tk_err_gen = compute_srr_db_points(tk, tk_hat_gen)

    y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw,
                           n_cycles, bwr)
    y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq,
                                   center_freq, bw, n_cycles, bwr)
    _sig_err = compute_srr_db(y_rf, y_rf_resynth)

    y_rf_resynth_gen, t_rf = sample_rf(ck_hat_gen, tk_hat_gen, period,
                                       samp_freq, center_freq, bw, n_cycles,
                                       bwr)
    _sig_err_gen = compute_srr_db(y_rf, y_rf_resynth_gen)

    return _tk_err, _sig_err, _tk_err_gen, _sig_err_gen
Example #3
0
def process_noisy_samples(n_diracs, seed, period, H_tot, freqs, center_freq,
                          bw, n_cycles, bwr, samp_freq, snr_db, cadzow_iter,
                          oversample_fact):
    """
    Fig. 2.8-2.9
    """

    ck, tk = create_pulse_param(n_diracs, period=period, seed=seed)

    # oversample
    samp_bw = (2 * oversample_fact * n_diracs + 1) / period
    y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw,
                               n_cycles, bwr)
    y_noisy = add_noise(y_samp, snr_db, seed=seed)

    # estimate fourier coefficients
    fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot)

    # denoising + recovery
    fs_coeff_clean = cadzow_denoising(fs_coeff_hat,
                                      n_diracs,
                                      n_iter=cadzow_iter)
    ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs)
    tk_hat = estimate_time_param(ann_filt, period)
    ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period)

    # compute errors
    _tk_err = compute_srr_db_points(tk, tk_hat)

    y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw,
                           n_cycles, bwr)
    y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq,
                                   center_freq, bw, n_cycles, bwr)
    _sig_err = compute_srr_db(y_rf, y_rf_resynth)

    return _tk_err, _sig_err
Example #4
0
"""
Estimate FS coefficients of sum of diracs
"""
freqs_fft = np.fft.fftfreq(n_samples, Ts)
increasing_order = np.argsort(freqs_fft)
freqs_fft = freqs_fft[increasing_order]
Y = (np.fft.fft(y_samp))[increasing_order] / n_samples

# equalize
freqs = freqs_fft + center_freq
H_tot = total_freq_response(freqs, center_freq, bw, n_cycles, bwr)
fs_coeff_hat = Y / H_tot
"""
FRI recovery
"""
ann_filt = compute_ann_filt(fs_coeff_hat, n_diracs)
tk_hat = estimate_time_param(ann_filt, period)
ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period)
"""
Evaluate
"""
evaluate_recovered_param(ck, tk, ck_hat, tk_hat)
"""
Plot measured data, alongside typical RF data
"""
y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles,
                       bwr)

if viz:
    """rf data + pulse locations"""
    time_scal = 1e5
Example #5
0
        y_samp_demod = np.exp(-1j * 2 * np.pi * center_freq * t_samp) * y_samp
        Y_shift = np.fft.fft(y_samp_demod)
        Y_lpf = np.zeros(Y_shift.shape, dtype=np.complex)
        Y_lpf[fs_ind_base] = Y_shift[fs_ind_base]
        y_samp_lpf = np.fft.ifft(Y_lpf)
        y_samp_sub = y_samp_lpf[sub_idx]

        # TGC
        y_samp_sub = y_samp_sub * atten

        # recovery
        fs_coeff_hat = estimate_fourier_coeff(y_samp_sub, t_samp_sub, H=H_tot)
        fs_coeff_hat_clean = cadzow_denoising(fs_coeff_hat,
                                              K,
                                              n_iter=cadzow_iter)
        ann_filt = compute_ann_filt(fs_coeff_hat_clean, K)
        tk_hat = estimate_time_param(ann_filt, period)
        ck_hat = estimate_amplitudes(fs_coeff_hat_clean, fs_ind / period,
                                     tk_hat, period)

        # evaluate
        y_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq,
                         bw_pulse, n_cycles)[0]
        srr = compute_srr_db(y_samp, y_rf)
        print("SRR : %f dB" % srr)

        rx_echoes[chan_idx] = tk_hat
        amplitudes[chan_idx] = ck_hat

    tot_time = time.time() - start_time
    print("TOTAL TIME : %f min" % (tot_time / 60))
Example #6
0
def process_fig2p10(n_diracs,
                    period,
                    snr_db,
                    center_freq,
                    bw,
                    n_cycles,
                    bwr,
                    samp_freq,
                    cadzow_iter,
                    oversample_fact,
                    viz=False,
                    seed=0):
    """
    Fig. 2.8-2.9
    """

    # create FRI parameters
    ck, tk = create_pulse_param(n_diracs, period=period, seed=seed)

    # set oversampling
    M = oversample_fact * n_diracs
    n_samples = 2 * M + 1
    samp_bw = n_samples / period
    Ts = 1 / samp_bw

    # oversample
    y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw,
                               n_cycles, bwr)
    y_noisy = add_noise(y_samp, snr_db, seed=seed)

    # estimate fourier coefficients
    freqs_fft = np.fft.fftfreq(n_samples, Ts)
    increasing_order = np.argsort(freqs_fft)
    freqs_fft = freqs_fft[increasing_order]
    freqs = freqs_fft + center_freq
    H_tot = total_freq_response(freqs, center_freq, bw, n_cycles, bwr)
    fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot)

    # denoising + recovery
    fs_coeff_clean = cadzow_denoising(fs_coeff_hat,
                                      n_diracs,
                                      n_iter=cadzow_iter)
    ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs)
    tk_hat = estimate_time_param(ann_filt, period)
    ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period)

    # compute errors
    tk_err = compute_srr_db_points(tk, tk_hat)

    y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw,
                           n_cycles, bwr)
    y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq,
                                   center_freq, bw, n_cycles, bwr)
    sig_err = compute_srr_db(y_rf, y_rf_resynth)

    print()
    print("%d Diracs, %.02fx oversampling:" % (n_diracs, oversample_fact))
    print("Locations SRR : %.02f dB" % tk_err)
    print("Resynthesized error : %.02fdB" % sig_err)
    """visualize"""
    if viz:

        import matplotlib.pyplot as plt
        time_scal = 1e5

        plt.figure()

        baseline = plt.stem(time_scal * tk,
                            ck,
                            'g',
                            markerfmt='go',
                            label="True")[2]
        plt.setp(baseline, color='g')
        baseline.set_xdata([0, time_scal * period])

        baseline = plt.stem(time_scal * tk_hat,
                            ck_hat,
                            'r',
                            markerfmt='r^',
                            label="Estimate")[2]
        plt.setp(baseline, color='r')
        baseline.set_xdata(([0, time_scal * period]))
        plt.xlabel("Time [%s seconds]" % str(1 / time_scal))
        plt.xlim([0, time_scal * period])
        plt.legend(loc='lower right')
        plt.grid()
        plt.tight_layout()
        ax = plt.gca()
        ax.axes.yaxis.set_ticklabels([])

        # resynthesized signal
        plt.figure()
        plt.plot(time_scal * t_rf, y_rf, label="True", alpha=0.65)
        plt.plot(time_scal * t_rf, y_rf_resynth, label="Estimate", alpha=0.65)
        plt.xlim([0, time_scal * period])
        plt.grid()
        plt.xlabel("Time [%s seconds]" % str(1 / time_scal))
        plt.tight_layout()
        plt.legend(loc='lower right')
        ax = plt.gca()
        ax.axes.yaxis.set_ticklabels([])
                                pos=True)
    """
    Oversample in frequency with cadzow denoising + genfri
    """
    stop_cri = 'max_iter'
    max_ini = 7
    cadzow_iter = 20
    oversample_freq = 5
    # sample
    y_samp, t_samp, fs_ind = sample_ideal_project(
        ck, tk, period, oversample_freq=oversample_freq, K=K_rec)

    # standard FRI with cadzow denoising
    fs_coeff = estimate_fourier_coeff(y_samp, t_samp, fs_ind)
    fs_coeff = cadzow_denoising(fs_coeff, K_rec, n_iter=cadzow_iter)
    ann_filt = compute_ann_filt(fs_coeff, K_rec)
    tk_hat = estimate_time_param(ann_filt, period)
    ck_hat = estimate_amplitudes(fs_coeff, fs_ind / period, tk_hat, period)

    # GenFRI, first build forward mapping
    freqs_grid, t_samp_grid = np.meshgrid(fs_ind / period, t_samp)
    G = np.exp(2j * np.pi * freqs_grid * t_samp_grid)
    warnings.filterwarnings("ignore")
    fs_coeff_gen, min_error, c_opt, ini = gen_fri(G,
                                                  y_samp,
                                                  K_rec,
                                                  max_ini=max_ini,
                                                  stop_cri=stop_cri,
                                                  seed=seed)
    warnings.filterwarnings("default")
    tk_hat_gen = estimate_time_param(c_opt, period)