def process_fig2p14(n_diracs, seed, period, H_clean, freqs, idft_trunc, samp_bw, center_freq, bw, n_cycles, bwr, samp_freq, snr_db, max_ini, cadzow_iter, oversample_fact): ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) # add noise H_tot = add_noise(H_clean, snr_db, seed=seed) """ Cadzow + TLS """ # estimate FS coefficients of sum of diracs fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot) # denoise and recover parameters fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) """ GenFRI, denoise and recover parameters SIMULATANEOUSLY """ G = idft_trunc * H_tot fs_coeff_gen, min_error, c_opt, ini = gen_fri(G, y_samp, n_diracs, stop_cri='max_iter', max_ini=max_ini, seed=seed) tk_hat_gen = estimate_time_param(c_opt, period) ck_hat_gen = estimate_amplitudes(fs_coeff_gen, freqs, tk_hat_gen, period) """ Evaluate """ _tk_err = compute_srr_db_points(tk, tk_hat) _tk_err_gen = compute_srr_db_points(tk, tk_hat_gen) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err = compute_srr_db(y_rf, y_rf_resynth) y_rf_resynth_gen, t_rf = sample_rf(ck_hat_gen, tk_hat_gen, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err_gen = compute_srr_db(y_rf, y_rf_resynth_gen) return _tk_err, _sig_err, _tk_err_gen, _sig_err_gen
def process_fig2p6(n_diracs, seed, period, H_tot, freqs, center_freq, bw, n_cycles, bwr, samp_freq): ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # critical sampling parameters samp_bw = (2 * n_diracs + 1) / period # sample y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) # estimate FS coeff fs_coeff_hat = estimate_fourier_coeff(y_samp, t_samp, H=H_tot) # FRI recovery ann_filt = compute_ann_filt(fs_coeff_hat, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period) # compute errors tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) resynth_err = compute_srr_db(y_rf, y_rf_resynth) return tk_err, resynth_err
def process_noisy_samples_gen(n_diracs, seed, period, G, freqs, center_freq, bw, n_cycles, bwr, samp_freq, snr_db, max_ini, oversample_fact): """ Fig. 2.11-2.12 """ stop_cri = 'max_iter' # 'mse' or 'max_iter' ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # oversample samp_bw = (2 * oversample_fact * n_diracs + 1) / period y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) y_noisy = add_noise(y_samp, snr_db, seed=seed) # denoising + recovery fs_coeff_gen, min_error, c_opt, ini = gen_fri(G, y_noisy, n_diracs, max_ini=max_ini, stop_cri=stop_cri, seed=seed) tk_hat = estimate_time_param(c_opt, period) ck_hat = estimate_amplitudes(fs_coeff_gen, freqs, tk_hat, period) # compute errors _tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err = compute_srr_db(y_rf, y_rf_resynth) return _tk_err, _sig_err
def process_noisy_samples(n_diracs, seed, period, H_tot, freqs, center_freq, bw, n_cycles, bwr, samp_freq, snr_db, cadzow_iter, oversample_fact): """ Fig. 2.8-2.9 """ ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # oversample samp_bw = (2 * oversample_fact * n_diracs + 1) / period y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) y_noisy = add_noise(y_samp, snr_db, seed=seed) # estimate fourier coefficients fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot) # denoising + recovery fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) # compute errors _tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) _sig_err = compute_srr_db(y_rf, y_rf_resynth) return _tk_err, _sig_err
y_samp_sub = y_samp_sub * atten # recovery fs_coeff_hat = estimate_fourier_coeff(y_samp_sub, t_samp_sub, H=H_tot) fs_coeff_hat_clean = cadzow_denoising(fs_coeff_hat, K, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_hat_clean, K) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_hat_clean, fs_ind / period, tk_hat, period) # evaluate y_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw_pulse, n_cycles)[0] srr = compute_srr_db(y_samp, y_rf) print("SRR : %f dB" % srr) rx_echoes[chan_idx] = tk_hat amplitudes[chan_idx] = ck_hat tot_time = time.time() - start_time print("TOTAL TIME : %f min" % (tot_time / 60)) """ save data """ time_stamp = datetime.datetime.now().strftime("%m_%d_%Hh%M") results_dir = os.path.join(os.path.dirname(__file__), "nde_standard_%s" % (time_stamp)) os.makedirs(results_dir) np.savez(os.path.join(results_dir, "results"), rx_echoes=rx_echoes, amplitudes=amplitudes,
def process_fig2p10(n_diracs, period, snr_db, center_freq, bw, n_cycles, bwr, samp_freq, cadzow_iter, oversample_fact, viz=False, seed=0): """ Fig. 2.8-2.9 """ # create FRI parameters ck, tk = create_pulse_param(n_diracs, period=period, seed=seed) # set oversampling M = oversample_fact * n_diracs n_samples = 2 * M + 1 samp_bw = n_samples / period Ts = 1 / samp_bw # oversample y_samp, t_samp = sample_iq(ck, tk, period, samp_bw, center_freq, bw, n_cycles, bwr) y_noisy = add_noise(y_samp, snr_db, seed=seed) # estimate fourier coefficients freqs_fft = np.fft.fftfreq(n_samples, Ts) increasing_order = np.argsort(freqs_fft) freqs_fft = freqs_fft[increasing_order] freqs = freqs_fft + center_freq H_tot = total_freq_response(freqs, center_freq, bw, n_cycles, bwr) fs_coeff_hat = estimate_fourier_coeff(y_noisy, t_samp, H=H_tot) # denoising + recovery fs_coeff_clean = cadzow_denoising(fs_coeff_hat, n_diracs, n_iter=cadzow_iter) ann_filt = compute_ann_filt(fs_coeff_clean, n_diracs) tk_hat = estimate_time_param(ann_filt, period) ck_hat = estimate_amplitudes(fs_coeff_clean, freqs, tk_hat, period) # compute errors tk_err = compute_srr_db_points(tk, tk_hat) y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) sig_err = compute_srr_db(y_rf, y_rf_resynth) print() print("%d Diracs, %.02fx oversampling:" % (n_diracs, oversample_fact)) print("Locations SRR : %.02f dB" % tk_err) print("Resynthesized error : %.02fdB" % sig_err) """visualize""" if viz: import matplotlib.pyplot as plt time_scal = 1e5 plt.figure() baseline = plt.stem(time_scal * tk, ck, 'g', markerfmt='go', label="True")[2] plt.setp(baseline, color='g') baseline.set_xdata([0, time_scal * period]) baseline = plt.stem(time_scal * tk_hat, ck_hat, 'r', markerfmt='r^', label="Estimate")[2] plt.setp(baseline, color='r') baseline.set_xdata(([0, time_scal * period])) plt.xlabel("Time [%s seconds]" % str(1 / time_scal)) plt.xlim([0, time_scal * period]) plt.legend(loc='lower right') plt.grid() plt.tight_layout() ax = plt.gca() ax.axes.yaxis.set_ticklabels([]) # resynthesized signal plt.figure() plt.plot(time_scal * t_rf, y_rf, label="True", alpha=0.65) plt.plot(time_scal * t_rf, y_rf_resynth, label="Estimate", alpha=0.65) plt.xlim([0, time_scal * period]) plt.grid() plt.xlabel("Time [%s seconds]" % str(1 / time_scal)) plt.tight_layout() plt.legend(loc='lower right') ax = plt.gca() ax.axes.yaxis.set_ticklabels([])
ck_hat, tk_hat, period = recover_parameters(rf_data_trunc[channel_idx, :], time_vec_trunc, K, oversample_freq, center_freq, bandwidth, num_cycles, cadzow_iter=cadzow_iter) print("Locations SRR [dB] : %f " % compute_srr_db_points(true_tofs[channel_idx, :], tk_hat + t0)) # resynthesize y_resynth = sample_rf(ck_hat, tk_hat, duration, samp_freq, center_freq, bandwidth, num_cycles)[0] print("Resynthesized SRR [dB] : %f " % compute_srr_db( rf_data_trunc[channel_idx, :] / max(rf_data_trunc[channel_idx, :]), y_resynth / max(y_resynth))) plt.figure() plt.plot(time_vec_trunc + t0, rf_data_trunc[channel_idx, :] / max(rf_data_trunc[channel_idx, :]), alpha=ALPHA, label="Original") plt.plot(time_vec_trunc + t0, y_resynth / max(y_resynth), alpha=ALPHA, label="Resynthesized") plt.xlim([min_time, max_time]) plt.grid() plt.xlabel("Time [s]") plt.legend()
ck_hat = estimate_amplitudes(fs_coeff_hat, freqs, tk_hat, period) """ Evaluate """ evaluate_recovered_param(ck, tk, ck_hat, tk_hat) tk_err = compute_srr_db_points(tk, tk_hat) print("Locations SRR : %f dB" % tk_err) """ Visualize recovery """ y_rf, t_rf = sample_rf(ck, tk, period, samp_freq, center_freq, bw, n_cycles, bwr) y_rf_resynth, t_rf = sample_rf(ck_hat, tk_hat, period, samp_freq, center_freq, bw, n_cycles, bwr) err_sig = compute_srr_db(y_rf, y_rf_resynth) print("Resynthesized error : %f dB" % err_sig) if viz: time_scal = 1e5 """rf data + pulse locations""" plt.figure() plt.plot(time_scal * t_rf, y_rf, label="RF data", alpha=0.65) baseline = plt.stem(time_scal * tk, ck, 'g', markerfmt='go', label="Parameters")[2] plt.setp(baseline, color='g') baseline.set_xdata([0, time_scal * period])