def test_l1_l2(self): lmda1 = 0.001 lmda2 = 0.001 model = Sequential(verbose=1) model.add( Dense(10, kernel_regularizer=l1_l2(lmda1, lmda2), input_dim=2, seed=1)) model.add(Activation('sigmoid')) model.add(Dense(2, kernel_regularizer=l1_l2(lmda1, lmda2), seed=6)) model.add(Activation('tanh')) model.add(Dense(2, kernel_regularizer=l1_l2(lmda1, lmda2), seed=6)) model.add(Activation('softmax')) sgd = StochasticGradientDescent(learning_rate=0.05) model.compile(optimizer=sgd, loss="cross_entropy") model.fit(self.X_train, self.y_train, epochs=9, batch_size=2) print(model.layers[-2].biases) print(model.layers[-2].weights) expected_biases = np.array([[-0.95917324, -0.32783731]], dtype=np.float64) self.assertTrue(np.allclose(expected_biases, model.layers[-2].biases)) expected_weights = np.array( [[0.71132812, -2.20343103], [1.44723471, -2.40020303]], dtype=np.float64) self.assertTrue(np.allclose(expected_weights, model.layers[-2].weights))
def test_l2(self): lmda = 0.001 model = Sequential(verbose=1) model.add(Dense(10, kernel_regularizer=l2(lmda), input_dim=2, seed=1)) model.add(Activation('sigmoid')) model.add(Dense(2, kernel_regularizer=l2(lmda), seed=6)) model.add(Activation('tanh')) model.add(Dense(2, kernel_regularizer=l2(lmda), seed=6)) model.add(Activation('softmax')) sgd = StochasticGradientDescent(learning_rate=0.05) model.compile(optimizer=sgd, loss="cross_entropy") model.fit(self.X_train, self.y_train, epochs=10, batch_size=2) print(model.layers[-2].biases) print(model.layers[-2].weights) expected_biases = np.array([[-0.95917324, -0.32783731]], dtype=np.float64) self.assertTrue(np.allclose(expected_biases, model.layers[-2].biases)) expected_weights = np.array( [[1.58872834, -1.65159914], [2.04547398, -1.63848661]], dtype=np.float64) self.assertTrue(np.allclose(expected_weights, model.layers[-2].weights))
def test_eigen(self): eigen_vals, eigen_vecs = Decomposition.eigens(self.X) expected_eigen_vals = [2.05625000e+02, -2.84217094e-14, -3.48372238e-16] expected_eigen_vecs = [[0.82697677, -0.56223609, 0.02881115], [-0.55131785, -0.81091744, -0.15430393], [-0.11026357, -0.16218349, 0.98760327]] self.assertTrue(np.allclose(eigen_vals, expected_eigen_vals)) self.assertTrue(np.allclose(eigen_vecs, expected_eigen_vecs))
def test_rbf_kernel(self): # Tests RBF kernel of svc. X1 = Distribution.radial_binary(pts=100, mean=[0, 0], st=1, ed=2, seed=100) X2 = Distribution.radial_binary(pts=100, mean=[0, 0], st=4, ed=5, seed=100) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X1.shape[0]) X_train = np.vstack((X1, X2)) y_train = np.hstack((Y1, Y2)) clf = svm.SVC(kernel='rbf', gamma=10) clf.fit(X_train, y_train) X1 = Distribution.radial_binary(pts=10, mean=[0, 0], st=1, ed=2, seed=100) X2 = Distribution.radial_binary(pts=10, mean=[0, 0], st=4, ed=5, seed=100) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X2.shape[0]) X_test = np.vstack((X1, X2)) y_test = np.hstack((Y1, Y2)) predictions, projections = clf.predict(X_test, return_projection=True) expected_projections = np.array([ 1.2630574, 1.3302442, 1.502788, 1.2003369, 1.4567516, 1.0555044, 1.434326, 1.4227715, 1.1069533, 1.104987, -1.6992458, -1.5001097, -1.0005158, -1.8284273, -1.0863144, -2.238042, -1.2274336, -1.2235101, -2.1250129, -2.0870237 ], ) self.assertTrue(np.allclose(projections, expected_projections)) self.assertTrue(np.allclose(predictions, y_test))
def test_pca(self): principal_components, rescaled_X = Decomposition.pca(self.X, num_components=3, return_scaled=True) expected_rescaled_X = [[1.81383571e+01, 2.22044605e-16, 3.33066907e-16], [9.06917857e+00, 1.11022302e-16, 1.66533454e-16], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [-9.06917857e+00, -1.11022302e-16, -1.66533454e-16], [-1.81383571e+01, -2.22044605e-16, -3.33066907e-16]] self.assertTrue(np.allclose(rescaled_X, expected_rescaled_X)) expected_principal_components = [[0.82697677, 0.02881115, -0.56223609], [-0.55131785, -0.15430393, -0.81091744], [-0.11026357, 0.98760327, -0.16218349]] self.assertTrue(np.allclose(principal_components, expected_principal_components)) reconstructed_x = np.dot(rescaled_X, principal_components.T) + self.X.mean(axis=0) self.assertTrue(np.allclose(reconstructed_x, self.X))
def test_predictions(self): skl_db = skl_DBSCAN(self.eps, self.min_points) skl_db.fit(self.X) fs2ml_db = fs2ml_DBSCAN(self.eps, self.min_points) labels = fs2ml_db.fit_predict(self.X) self.assertTrue(np.allclose(np.array(labels, dtype=np.int64), np.array(skl_db.labels_, dtype=np.int64)))
def test_linear_kernel(self): # Tests linear kernel of svc. X1 = Distribution.linear(pts=100, mean=[8, 10], covr=[[1.5, 1], [1, 1.5]], seed=100) X2 = Distribution.linear(pts=100, mean=[9, 5], covr=[[1.5, 1], [1, 1.5]], seed=100) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X2.shape[0]) X_train = np.vstack((X1, X2)) y_train = np.hstack((Y1, Y2)) clf_lin = svm.SVC(kernel='linear') clf_lin.fit(X_train, y_train) X1 = Distribution.linear(pts=10, mean=[8, 10], covr=[[1.5, 1], [1, 1.5]], seed=100) X2 = Distribution.linear(pts=10, mean=[9, 5], covr=[[1.5, 1], [1, 1.5]], seed=100) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X2.shape[0]) X_test = np.vstack((X1, X2)) y_test = np.hstack((Y1, Y2)) predictions, projections = clf_lin.predict(X_test, return_projection=True) expected_projections = np.array([ 5.2844825, 2.8846788, 3.898558, 2.4527097, 4.271367, 4.6425023, 5.170607, 3.3408344, 5.3939104, 2.779106, -2.909471, -5.3092747, -4.2953954, -5.7412434, -3.9225864, -3.551451, -3.0233462, -4.853119, -2.8000426, -5.4148474 ]) self.assertTrue(np.allclose(projections, expected_projections)) self.assertTrue(np.allclose(predictions, y_test))
def test_predictions(self): skl_km = skl_KMeans(n_clusters=self.n_clusters, random_state=5) skl_km.fit(self.X) skl_labels = sorted(np.array(skl_km.labels_, dtype=np.int64)) fs2ml_km = fs2ml_KMeans(n_clusters=self.n_clusters, seed=5) fs2ml_labels = fs2ml_km.fit_predict(self.X) fs2ml_labels = sorted(np.array(fs2ml_labels, dtype=np.int64)) self.assertTrue(np.allclose(fs2ml_labels, skl_labels))
def test_predictions(self): sk_knn = sk_KNeighborsClassifier() sk_knn.fit(self.Xtrain, self.Ytrain) fs2ml_knn = fs2ml_KNeighborsClassifier() fs2ml_knn.fit(self.Xtrain, self.Ytrain) sk_labels = sk_knn.predict(self.Xtest) fs2ml_labels = fs2ml_knn.predict(self.Xtest) self.assertTrue(np.allclose(sk_labels, fs2ml_labels))
def __get_new_centers(self, centers): converged = True for label in range(self.n_clusters): indices = np.where(self.labels == label) pts_in_cluster = self.X[indices] new_center = pts_in_cluster.mean(0) if not np.allclose(centers[label], new_center): centers[label] = new_center converged = False return centers, converged
def test_cov_matrix(self): cov_matrix = Decomposition.cov_matrix(self.X, self.X) expected_cov_matrix = [[140.625, -93.75, -18.75], [-93.75, 62.5, 12.5], [-18.75, 12.5, 2.5]] self.assertTrue(np.allclose(cov_matrix, expected_cov_matrix))
def test_poly_kernel(self): # Tests polynomial kernel of svc. X1 = Distribution.linear(pts=50, mean=[8, 20], covr=[[1.5, 1], [1, 2]], seed=100) X2 = Distribution.linear(pts=50, mean=[8, 15], covr=[[1.5, -1], [-1, 2]], seed=100) X3 = Distribution.linear(pts=50, mean=[15, 20], covr=[[1.5, 1], [1, 2]], seed=100) X4 = Distribution.linear(pts=50, mean=[15, 15], covr=[[1.5, -1], [-1, 2]], seed=100) X1 = np.vstack((X1, X2)) X2 = np.vstack((X3, X4)) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X2.shape[0]) X_train = np.vstack((X1, X2)) y_train = np.hstack((Y1, Y2)) clf = svm.SVC(kernel='polynomial', const=1, degree=2) clf.fit(X_train, y_train) X1 = Distribution.linear(pts=5, mean=[8, 20], covr=[[1.5, 1], [1, 2]], seed=100) X2 = Distribution.linear(pts=5, mean=[8, 15], covr=[[1.5, -1], [-1, 2]], seed=100) X3 = Distribution.linear(pts=5, mean=[15, 20], covr=[[1.5, 1], [1, 2]], seed=100) X4 = Distribution.linear(pts=5, mean=[15, 15], covr=[[1.5, -1], [-1, 2]], seed=100) X1 = np.vstack((X1, X2)) X2 = np.vstack((X3, X4)) Y1 = np.ones(X1.shape[0]) Y2 = -np.ones(X2.shape[0]) X_test = np.vstack((X1, X2)) y_test = np.hstack((Y1, Y2)) predictions, projections = clf.predict(X_test, return_projection=True) expected_projections = np.array([ 1.2630574, 1.3302442, 1.502788, 1.2003369, 1.4567516, 1.0555044, 1.434326, 1.4227715, 1.1069533, 1.104987, -1.6992458, -1.5001097, -1.0005158, -1.8284273, -1.0863144, -2.238042, -1.2274336, -1.2235101, -2.1250129, -2.0870237 ]) expected_projections = np.array([ 1.9282368, 4.1053743, 4.449601, 2.8149981, 3.337817, 1.5934888, 4.237419, 3.699658, 3.8548565, 2.8402433, -6.7378554, -2.9163127, -2.5978136, -4.833237, -4.421687, -5.2333884, -2.2744238, -3.0598483, -2.4422958, -3.890006 ], ) self.assertTrue(np.allclose(projections, expected_projections)) self.assertTrue(np.allclose(predictions, y_test))
def test_multiclass(self): X1 = Distribution.radial_binary(pts=10, mean=[0, 0], st=1, ed=2, seed=100) X2 = Distribution.radial_binary(pts=10, mean=[0, 0], st=4, ed=5, seed=100) X3 = Distribution.radial_binary(pts=10, mean=[0, 0], st=6, ed=7, seed=100) X4 = Distribution.radial_binary(pts=10, mean=[0, 0], st=8, ed=9, seed=100) Y1 = -np.ones(X1.shape[0]) Y2 = np.ones(X2.shape[0]) Y3 = 2 * np.ones(X3.shape[0]) Y4 = 3000 * np.ones(X4.shape[0]) X_train = np.vstack((X1, X2, X3, X4)) y_train = np.hstack((Y1, Y2, Y3, Y4)) clf = svm.SVC(kernel='rbf', gamma=10) clf.fit(X_train, y_train) X1 = Distribution.radial_binary(pts=10, mean=[0, 0], st=1, ed=2, seed=100) X2 = Distribution.radial_binary(pts=10, mean=[0, 0], st=4, ed=5, seed=100) X3 = Distribution.radial_binary(pts=10, mean=[0, 0], st=6, ed=7, seed=100) X4 = Distribution.radial_binary(pts=10, mean=[0, 0], st=8, ed=9, seed=100) X_test = np.vstack((X1, X2, X3, X4)) _, projections = clf.predict(X_test, return_projection=True) expected_projections = np.array([ 1.23564788, 1.15519477, 1.32441802, 1.04496554, 1.29740627, 0., 1.25561797, 1.22925452, 0., 1.11920321, 0.2991908, 0.23818634, 0.55359011, 0.29655677, 0., 0.59992803, 0.52733203, 0.30456398, 0.6027897, 0.33755249, 0., 0.04997651, 0.12099712, 0.12276944, 0., 0.19631702, 0.11836214, 0.06221966, 0.24539362, 0., 1.00000106, 1.0000021, 1.00000092, 1.19952335, 1.00000283, 1.17741522, 1.40596479, 1.60945299, 1.41534644, 1.27928235 ]) self.assertTrue(np.allclose(projections, expected_projections))