Example #1
0
def test_fit_FSLModel_on_invivo_sim():

    FIDs, hdr, trueconcs = syntheticFromBasisFile(basis_path,
                                                  noisecovariance=[[1E-3]],
                                                  broadening=(9.0, 9.0),
                                                  concentrations={'Mac': 2.0})

    basis, names, header = mrs_io.read_basis(basis_path)

    mrs = MRS(FID=FIDs,
              header=hdr,
              basis=basis,
              basis_hdr=header[0],
              names=names)
    mrs.processForFitting()

    metab_groups = [0] * mrs.numBasis
    Fitargs = {
        'ppmlim': [0.2, 4.2],
        'method': 'MH',
        'baseline_order': -1,
        'metab_groups': metab_groups,
        'MHSamples': 100
    }

    res = fit_FSLModel(mrs, **Fitargs)

    fittedRelconcs = res.getConc(scaling='internal', metab=mrs.names)

    answers = np.asarray(trueconcs)
    answers /= (answers[names.index('Cr')] + trueconcs[names.index('PCr')])

    assert np.allclose(fittedRelconcs, answers, atol=5E-2)
def test_quantifyWater():

    basis, names, headerb = mrsio.read_basis(basisfile)
    crIndex = names.index('Cr')
    data, header = mrsio.read_FID(metabfile)
    dataw, headerw = mrsio.read_FID(h2ofile)

    mrs = MRS(FID=data,
              header=header,
              basis=basis[:, crIndex],
              names=['Cr'],
              basis_hdr=headerb[crIndex],
              H2O=dataw)
    mrs.check_FID(repair=True)
    mrs.check_Basis(repair=True)

    Fitargs = {
        'ppmlim': [0.2, 5.2],
        'method': 'MH',
        'baseline_order': -1,
        'metab_groups': [0]
    }

    res = fit_FSLModel(mrs, **Fitargs)

    tissueFractions = {'GM': 0.6, 'WM': 0.4, 'CSF': 0.0}
    TE = 0.03
    T2dict = {
        'H2O_GM': 0.110,
        'H2O_WM': 0.080,
        'H2O_CSF': 2.55,
        'METAB': 0.160
    }

    res.calculateConcScaling(mrs,
                             referenceMetab=['Cr'],
                             waterRefFID=mrs.H2O,
                             tissueFractions=tissueFractions,
                             TE=TE,
                             T2=T2dict,
                             waterReferenceMetab='Cr',
                             wRefMetabProtons=5,
                             reflimits=(2, 5),
                             verbose=False)

    print(res.getConc(scaling='raw'))
    print(res.getConc(scaling='internal'))
    print(res.getConc(scaling='molality'))
    print(res.getConc(scaling='molarity'))

    assert np.allclose(res.getConc(scaling='internal'), 1.0)
    assert np.allclose(res.getConc(scaling='molarity'), 10.59, atol=1E-1)
Example #3
0
def data():
    noiseCov = 0.001
    amplitude = np.asarray([0.5, 0.5, 1.0]) * 10
    chemshift = np.asarray([3.0, 3.05, 2.0]) - 4.65
    lw = [10, 10, 10]
    phases = [0, 0, 0]
    g = [0, 0, 0]
    basisNames = ['Cr', 'PCr', 'NAA']
    begintime = 0.00005

    basisFIDs = []
    for idx, _ in enumerate(amplitude):
        tmp, basisHdr = syntheticFID(noisecovariance=[[0.0]],
                                     chemicalshift=[chemshift[idx] + 0.1],
                                     amplitude=[1.0],
                                     linewidth=[lw[idx] / 5],
                                     phase=[phases[idx]],
                                     g=[g[idx]],
                                     begintime=0)
        basisFIDs.append(tmp[0])
    basisFIDs = np.asarray(basisFIDs)

    synFID, synHdr = syntheticFID(noisecovariance=[[noiseCov]],
                                  chemicalshift=chemshift,
                                  amplitude=amplitude,
                                  linewidth=lw,
                                  phase=phases,
                                  g=g,
                                  begintime=begintime)

    synMRS = MRS(FID=synFID[0],
                 header=synHdr,
                 basis=basisFIDs,
                 basis_hdr=basisHdr,
                 names=basisNames)

    metab_groups = [0] * synMRS.numBasis
    Fitargs = {
        'ppmlim': [0.2, 4.2],
        'method': 'MH',
        'baseline_order': -1,
        'metab_groups': metab_groups,
        'MHSamples': 100,
        'disable_mh_priors': True
    }

    res = fit_FSLModel(synMRS, **Fitargs)

    return res, amplitude
Example #4
0
def test_fit_FSLModel_Newton(data):

    mrs = data[0]
    amplitudes = data[1]

    metab_groups = [0] * mrs.numBasis
    Fitargs = {
        'ppmlim': [0.2, 4.2],
        'method': 'Newton',
        'baseline_order': -1,
        'metab_groups': metab_groups
    }

    res = fit_FSLModel(mrs, **Fitargs)

    fittedconcs = res.getConc(metab=mrs.names)
    fittedRelconcs = res.getConc(scaling='internal', metab=mrs.names)
    assert np.allclose(fittedconcs, amplitudes, atol=1E-1)
    assert np.allclose(fittedRelconcs,
                       amplitudes / (amplitudes[0] + amplitudes[1]),
                       atol=1E-1)
Example #5
0
def test_calcQC():
    # Syntetic data
    synFID, synHdr = syntheticFID(noisecovariance=[[0.1]],
                                  points=2 * 2048,
                                  chemicalshift=[0],
                                  amplitude=[6.0],
                                  linewidth=[10])
    synFIDNoise, synHdrNoise = syntheticFID(noisecovariance=[[0.1]],
                                            points=2 * 2048,
                                            chemicalshift=[0],
                                            amplitude=[0],
                                            linewidth=[10])
    basisFID, basisHdr = syntheticFID(noisecovariance=[[0.0]],
                                      points=2 * 2048,
                                      chemicalshift=[0],
                                      amplitude=[0.1],
                                      linewidth=[2])

    synMRS = MRS(FID=synFID[0], header=synHdr)
    synMRSNoise = MRS(FID=synFIDNoise[0], header=synHdrNoise)
    synMRSNoNoise = MRS(FID=synHdr['noiseless'], header=synHdr)
    synMRS_basis = MRS(FID=synFID[0],
                       header=synHdr,
                       basis=basisFID[0],
                       basis_hdr=basisHdr,
                       names=['Peak1'])

    truenoiseSD = np.sqrt(synHdrNoise['cov'][0, 0])
    pureNoiseMeasured = np.std(synMRSNoise.getSpectrum())
    realnoise = np.std(np.real(synMRSNoise.getSpectrum()))
    imagNoise = np.std(np.imag(synMRSNoise.getSpectrum()))
    print(
        f'True cmplx noise = {truenoiseSD:0.3f}, pure noise measured = {pureNoiseMeasured:0.3f} (real/imag = {realnoise:0.3f}/{imagNoise:0.3f})'
    )

    # Calc SNR without apodisation from the no noise and pure noise spectra
    truePeakHeight = np.max(np.real(synMRSNoNoise.getSpectrum()))
    SNR_noApod = truePeakHeight / pureNoiseMeasured
    print(
        f'SNR no apod: {SNR_noApod:0.1f} ({truePeakHeight:0.2e}/{pureNoiseMeasured:0.2e})'
    )

    # Calc SNR with apodisation from the no noise and pure noise spectra
    trueLW = synHdr['inputopts']['linewidth'][0]
    trueApodSpec_Noise = specApodise(synMRSNoise, trueLW)
    apodNoise = np.std(trueApodSpec_Noise)
    trueApodSpec_noNoise = specApodise(synMRSNoNoise, trueLW)
    peakHeigtApod = np.max(np.real(trueApodSpec_noNoise))
    SNR = peakHeigtApod / apodNoise
    print(f'SNR w. apod: {SNR:0.1f} ({peakHeigtApod:0.2e}/{apodNoise:0.2e})')

    metab_groups = [0]
    Fitargs = {
        'ppmlim': [2.65, 6.65],
        'method': 'Newton',
        'baseline_order': -1,
        'metab_groups': [0]
    }

    res = fit_FSLModel(synMRS_basis, **Fitargs)
    fwhm_test, SNRObj = calcQC(synMRS_basis, res, ppmlim=[2.65, 6.65])
    print(f'Measured FWHM: {fwhm_test.mean().to_numpy()[0]:0.1f}')
    print(f'Measured spec SNR: {SNRObj.spectrum:0.1f}')
    print(f'Measured peak SNR: {SNRObj.peaks.mean().to_numpy()[0]:0.1f}')
    assert np.isclose(fwhm_test.mean().to_numpy(), trueLW, atol=1E0)
    assert np.isclose(SNRObj.spectrum, SNR_noApod, atol=1E1)
    assert np.isclose(SNRObj.peaks.mean().to_numpy(), SNR, atol=2E1)