Example #1
0
def prediction(inputfile, model):
    #read in data
    try:
        data = pd.read_csv(inputfile, header=None)
        print("Data loaded")
    except:
        print("Dataset could not be loaded. Is the dataset missing?")

    data.columns = [
        'AAGE', 'ACLSWKR', 'ADTIND', 'ADTOCC', 'AHGA', 'AHRSPAY', 'AHSCOL',
        'AMARITL', 'AMJIND', 'AMJOCC', 'ARACE', 'AREORGN', 'ASEX', 'AUNMEM',
        'AUNTYPE', 'AWKSTAT', 'CAPGAIN', 'CAPLOSS', 'DIVVAL', 'FILESTAT',
        'GRINREG', 'GRINST', 'HHDFMX', 'HHDREL', 'MIGMTR1', 'MIGMTR3',
        'MIGMTR4', 'MIGSAME', 'MIGSUN', 'NOEMP', 'PARENT', 'PEFNTVTY',
        'PEMNTVTY', 'PENATVTY', 'PRCITSHP', 'SEOTR', 'VETQVA', 'VETYN',
        'WKSWORK', 'YEAR'
    ]

    # preprocess data
    data = preprocess(data)
    # load model file
    try:
        loaded_model = pickle.load(open(model, 'rb'))
        print("Model loaded")
    except:
        print("Model could not be loaded. Is the model missing?")

    # predict run
    result = loaded_model.predict(data)
    # show result
    print(result)
Example #2
0
def prediction(inputfile, model):
    #read in data
    try:
        data = pd.read_csv(inputfile, header=None)
        print("Data loaded")
    except:
        print("Dataset could not be loaded. Is the dataset missing?")

    data.columns = [
        'AAGE', 'ACLSWKR', 'ADTIND', 'ADTOCC', 'AHGA', 'AHRSPAY', 'AHSCOL',
        'AMARITL', 'AMJIND', 'AMJOCC', 'ARACE', 'AREORGN', 'ASEX', 'AUNMEM',
        'AUNTYPE', 'AWKSTAT', 'CAPGAIN', 'CAPLOSS', 'DIVVAL', 'FILESTAT',
        'GRINREG', 'GRINST', 'HHDFMX', 'HHDREL', 'MARSUPWT', 'MIGMTR1',
        'MIGMTR3', 'MIGMTR4', 'MIGSAME', 'MIGSUN', 'NOEMP', 'PARENT',
        'PEFNTVTY', 'PEMNTVTY', 'PENATVTY', 'PRCITSHP', 'SEOTR', 'VETQVA',
        'VETYN', 'WKSWORK', 'YEAR', 'TARGET'
    ]

    # features for segementation model
    filterCol = [
        'AAGE', 'AHGA', 'ASEX', 'CAPGAIN', 'CAPLOSS', 'DIVVAL', 'NOEMP',
        'WKSWORK'
    ]

    # preprocess data
    data = preprocess(data)
    # filtered data
    fdata = data[filterCol]
    # predict data
    pdata = fdata

    # apply PCA by fitting the predict data with only two dimensions
    pca = PCA(n_components=2)
    pca.fit(pdata)
    reduced_data = pca.transform(pdata)
    reduced_data = pd.DataFrame(reduced_data,
                                columns=['Dimension 1', 'Dimension 2'])

    # load model file
    try:
        loaded_model = pickle.load(open(model, 'rb'))
        print("Model loaded")
    except:
        print("Model could not be loaded. Is the model missing?")

    # predict run
    result = loaded_model.predict(reduced_data)
    # show result
    print(result)
Example #3
0
import importlib
import func
import numpy as np
import pandas as pd

df_101191 = pd.read_excel("data/191_BWSC101 Release Log Form.xlsx")
df_101592 = pd.read_excel("data/592_BWSC101 Release Log Form.xlsx")
df_101607 = pd.read_excel("data/607_BWSC101 Release Log Form.xlsx")

df_101191["RTN"] = df_101191.apply(func.completeRTN, axis=1)
df_101592["RTN"] = df_101592.apply(func.completeRTN, axis=1)
df_101607["RTN"] = df_101607.apply(func.completeRTN, axis=1)

func.preprocess(df_101607, "101607proc.xlsx", "101607")
print(df_101607.shape)
func.preprocess(df_101592, "101592proc.xlsx", "101592")
print(df_101592.shape)
func.preprocess(df_101191, "101191proc.xlsx", "101191")
print(df_101191.shape)

df_101 = df_101191.append(df_101592)
df_101 = df_101.append(df_101607)

df_101 = df_101[(df_101["A3A"] == 1) | (df_101["A2A"] == 1)]

print(df_101.shape)

# TCLass
tclass = pd.read_excel(
    'data/TClass Phase Action Dates All RTNs mgf A 04-10-2018.xlsm',
    sheetname="All")
Example #4
0
    print('Implement Spectral & Spatial Joint Network!')
else:
    raise NotImplementedError

############# load dataset(indian_pines & pavia_univ...)######################

a = load()

All_data, labeled_data, rows_num, categories, r, c, FLAG = a.load_data(
    flag=args.dataset)

print('Data has been loaded successfully!')

##################### Demision reduction & normlization ######################

a = preprocess(args.dr_method, args.dr_num)  #PCA & ICA

Alldata_DR = a.Dim_reduction(All_data)

print('Dimension reduction successfully!')

a = product(c, FLAG)

All_data_norm = a.normlization(All_data[:, 1:-1], args.mi, args.ma)  #spec

Alldata_DR = a.normlization(Alldata_DR, args.mi, args.ma)  #spat

image_data3D_DR = Alldata_DR.reshape(r, c, -1)

print('Image normlization successfully!')
Example #5
0
    print(
        "Dataset could not be loaded. Is the dataset missing? Please use -i inputfile"
    )

data.columns = [
    'AAGE', 'ACLSWKR', 'ADTIND', 'ADTOCC', 'AHGA', 'AHRSPAY', 'AHSCOL',
    'AMARITL', 'AMJIND', 'AMJOCC', 'ARACE', 'AREORGN', 'ASEX', 'AUNMEM',
    'AUNTYPE', 'AWKSTAT', 'CAPGAIN', 'CAPLOSS', 'DIVVAL', 'FILESTAT',
    'GRINREG', 'GRINST', 'HHDFMX', 'HHDREL', 'MARSUPWT', 'MIGMTR1', 'MIGMTR3',
    'MIGMTR4', 'MIGSAME', 'MIGSUN', 'NOEMP', 'PARENT', 'PEFNTVTY', 'PEMNTVTY',
    'PENATVTY', 'PRCITSHP', 'SEOTR', 'VETQVA', 'VETYN', 'WKSWORK', 'YEAR',
    'TARGET'
]

# preprocess data
data = preprocess(data)

# balance data by SMOTE
X, y, data = handle_imbalanced_data(data)

# drop instance weight from data
instance_weight = data.MARSUPWT
data = data.drop('MARSUPWT', axis=1)
# drop label from data
X = data.drop('TARGET', axis=1)

# feature selection
'''
X : features
y : labels
data : preprocessed data