def test_reduction_axis(inspecs, reduction, axis, nnabla_opts): func = getattr(F, reduction) fb = FunctionBenchmark( func, inspecs, [], dict(axis=axis), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_binary_classification_loss(inspecs, loss, nnabla_opts): func = getattr(F, loss) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_pairwise_logical(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_embed(inspecs, n_inputs, n_features, nnabla_opts): fb = FunctionBenchmark( PF.embed, inspecs, [], dict(n_inputs=n_inputs, n_features=n_features), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_activation(inspecs, activation, nnabla_opts): func = getattr(F, activation) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_logical_not(inspecs, nnabla_opts): func = F.logical_not fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_categorical_classification_loss(inspecs, loss, nnabla_opts): func = getattr(F, loss) fb = FunctionBenchmark( func, inspecs, [], dict(axis=1), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_pooling(inspecs, pool, nnabla_opts): if pool == 'average': func = F.average_pooling elif pool == 'max': func = F.max_pooling fb = FunctionBenchmark( func, inspecs, [], dict(kernel=(2, 2), stride=(2, 2)), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_instance_normalization(inspec_and_axis, nnabla_opts): inspec, axis = inspec_and_axis fb = FunctionBenchmark(PF.instance_normalization, inspec, [], dict(channel_axis=axis), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_pairwise_arithmetic(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark( func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_cumprod(seed, test_case, exclusive, reverse, with_mask, nnabla_opts): x_shape = test_case.shape axis = test_case.axis def init(shape): rng = np.random.RandomState(seed) return create_cumprod_input(rng, shape, axis, with_mask) need_grad = True inputs = [Inspec(x_shape, init, need_grad)] func_kwargs = dict( axis=axis, exclusive=exclusive, reverse=reverse, ) fb = FunctionBenchmark(F.cumprod, inputs, [], func_kwargs, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_categorical_classification_loss(inspecs, loss, nnabla_opts): func = getattr(F, loss) fb = FunctionBenchmark(func, inspecs, [], dict(axis=1), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_softmax(inspecs, axis, nnabla_opts): fb = FunctionBenchmark(F.softmax, inspecs, [], dict(axis=axis), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_logical_not(inspecs, nnabla_opts): func = F.logical_not fb = FunctionBenchmark(func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_convolution(inputs, func_kwargs, nnabla_opts): fb = FunctionBenchmark( PF.convolution, inputs, [], func_kwargs, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_bn(inspecs, batch_stat, nnabla_opts): fb = FunctionBenchmark(PF.batch_normalization, inspecs, [], dict(batch_stat=batch_stat), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_scalar_logical(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark(func, inspecs, [1], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_binary_classification_loss(inspecs, loss, nnabla_opts): func = getattr(F, loss) fb = FunctionBenchmark(func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_affine(inspecs, n_outmaps, nnabla_opts): fb = FunctionBenchmark(PF.affine, inspecs, [], dict(n_outmaps=n_outmaps), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_activation(inspecs, activation, nnabla_opts): func = getattr(F, activation) fb = FunctionBenchmark(func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_bn(inspecs, batch_stat, nnabla_opts): fb = FunctionBenchmark( PF.batch_normalization, inspecs, [], dict(batch_stat=batch_stat), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_layer_normalization(inspec_and_axis, nnabla_opts): inspec, axis = inspec_and_axis fb = FunctionBenchmark(PF.layer_normalization, inspec, [], dict(), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_activation(inspecs, shared, nnabla_opts): fb = FunctionBenchmark( PF.prelu, inspecs, [1], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_pad(inspecs, nnabla_opts): fb = FunctionBenchmark(F.pad, inspecs, [(10, 10, 10, 10), 'constant', 0.0], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_activation(inspecs, shared, nnabla_opts): fb = FunctionBenchmark(PF.prelu, inspecs, [1], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_mul2_with_broadcast(inspecs, op, nnabla_opts): func = getattr(F, op) fb = FunctionBenchmark(func, inspecs, [], {}, nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)
def test_transpose(inspecs, axis, nnabla_opts): fb = FunctionBenchmark(F.transpose, inspecs, [axis], dict(), nnabla_opts.ext, nnabla_opts.ext_kwargs) fb.benchmark() fb.write(writer=nnabla_opts.function_benchmark_writer)