def __init__(self, z_dim, output_dim=28**2): super(Generator, self).__init__() self.z_dim = z_dim self.fc1 = nn.Linear(z_dim, 500, bias=False) self.bn1 = nn.BatchNorm1d(500, affine=False, eps=1e-6, momentum=0.5) self.fc2 = nn.Linear(500, 500, bias=False) self.bn2 = nn.BatchNorm1d(500, affine=False, eps=1e-6, momentum=0.5) self.fc3 = LinearWeightNorm(500, output_dim, weight_scale=1) self.bn1_b = Parameter(torch.zeros(500)) self.bn2_b = Parameter(torch.zeros(500)) nn.init.xavier_uniform_(self.fc1.weight) nn.init.xavier_uniform_(self.fc2.weight)
def __init__(self, z_dim, output_dim=28**2): super(Generator, self).__init__() self.z_dim = z_dim self.fc1 = Linear(z_dim, 500) self.bn1 = tf.keras.layers.BatchNormalization(trainable=False, epsilon=1e-6, momentum=0.5) self.fc2 = Linear(500, 500) self.bn2 = tf.keras.layers.BatchNormalization(trainable=False, epsilon=1e-6, momentum=0.5) self.fc3 = LinearWeightNorm(500, output_dim) self.bn1_b = tf.Variable(tf.zeros(500)) self.bn2_b = tf.Variable(tf.zeros(500))
def __init__(self, input_dim=28**2, output_dim=10): super(Discriminator, self).__init__() self.input_dim = input_dim self.layers = torch.nn.ModuleList([ LinearWeightNorm(input_dim, 1000), LinearWeightNorm(1000, 500), LinearWeightNorm(500, 250), LinearWeightNorm(250, 250), LinearWeightNorm(250, 250) ]) self.final = LinearWeightNorm(250, output_dim, weight_scale=1)
def __init__(self, input_dim=28**2, output_dim=10): super(Discriminator, self).__init__() self.input_dim = input_dim self.layers_hidden = [ LinearWeightNorm(input_dim, 500), LinearWeightNorm(500, 500), LinearWeightNorm(500, 250), LinearWeightNorm(250, 250), LinearWeightNorm(250, 250) ] self.final = LinearWeightNorm(250, output_dim)