Example #1
0
def plot_cc_empSC_empFC(subjects):
    results = []
    for subject in subjects:
        empSCnorm, abeta, tau, fMRI = AD_Auxiliar.loadSubjectData(subject)
        empFC = FC.from_fMRI(fMRI)
        corr_SC_FCemp = FC.pearson_r(empFC, empSCnorm)
        print("{} -> Pearson_r(SCnorm, empFC) = {}".format(
            subject, corr_SC_FCemp))
        results.append(corr_SC_FCemp)

    plt.figure()
    n, bins, patches = plt.hist(
        results, bins=6, color='#0504aa',
        alpha=0.7)  #, histtype='step')  #, rwidth=0.85)
    plt.grid(axis='y', alpha=0.75)
    plt.xlabel('SC weights')
    plt.ylabel('Counts')
    plt.title("SC histogram", fontweight="bold", fontsize="18")
    plt.show()
Example #2
0
def findMinMax(arrayValues):
    return FC.findMinMax(arrayValues)
Example #3
0
def postprocess(FCs):
    FCemp = FC.postprocess(FCs)
    N = FCemp.shape[0]
    FCemp2 = FCemp - np.multiply(FCemp, np.eye(N))
    GBCemp = np.mean(FCemp2,1)
    return GBCemp
Example #4
0
def accumulate(FCs, nsub, signal):
    return FC.accumulate(FCs, nsub, signal)
Example #5
0
def init(S, N):
    return FC.init(S, N)
Example #6
0
def from_fMRI(signal, applyFilters = True):
    return FC.from_fMRI(signal, applyFilters=applyFilters)
Example #7
0
def FC_Similarity(FC1, FC2):  # FC Similarity
    return FC.FC_Similarity(FC1, FC2)
Example #8
0
def pearson_r(x, y):
    return FC.pearson_r(x, y)
Example #9
0
def characterizeConnectivityMatrix(C):
    return FC.characterizeConnectivityMatrix(C)