Example #1
0
def classify_test():
    dataset = CUB_Cls(root_dir=args.data_root_path,
                      train_data=args.train_data_path,
                      val_data=args.val_data_path,
                      test_data=args.test_data_path,
                      mode='test')
    dataloader = DataLoader(dataset, batch_size=1, shuffle=True)

    bi_model = get_bi_vgg(pretrained=True, trained=True, inference=True)
    bi_model.to_inference()
    bi_model.cuda()

    semi_model = get_semi_vgg(pretrained=True, trained=True, inference=False)
    semi_model.cuda()

    # multi_branch_model=get_multi_branch_vgg(pretrained=True,trained=True)
    # multi_branch_model.cuda()

    classify_results = []
    local_results = []
    for step, (b_name, b_x, b_y) in enumerate(tqdm(dataloader)):
        b_x = b_x.cuda()
        b_y = b_y.cuda()

        logits, cam = semi_model.forward(b_x)
        bi_logits, y_hat, bi_x_grad = bi_model.forward(b_x)

        img_path, raw_img, bbox = get_raw_imgs(b_name, dataset)
        final_cam = F.upsample(cam,
                               size=[raw_img.size[1], raw_img.size[0]],
                               mode='bilinear',
                               align_corners=True)
        norm_cam_np = get_max_binary_area(
            semi_model.norm_grad_2_binary(
                final_cam.detach()).squeeze().data.numpy())

        draw_raw, iou = cal_iou(norm_cam_np, bbox, raw_img.copy())

        # plot_raw_cam_bi(raw_img, draw_raw, final_cam, norm_cam_np)
        classify_results.append(
            torch.argmax(logits, dim=-1).item() == b_y.item())
        local_results.append(iou > 0.5)

    print('cls acc: ' + str(np.array(classify_results).mean()))
    print('iou: ' +
          str((np.array(local_results) * np.array(classify_results)).mean()))
Example #2
0
def bi_self_test():
    dataset = CUB_BI(root_dir=args.data_root_path,
                     train_data=args.train_data_path,
                     val_data=args.val_data_path,
                     test_data=args.test_data_path,
                     nature_data=args.data_root_path + 'natures/',
                     mode='test')
    dataloader = DataLoader(dataset, batch_size=1, shuffle=True)

    bi_model = get_bi_vgg(pretrained=True, trained=True, inference=True)
    bi_model.cuda()

    classify_result = []
    iou_result = []
    print('start test')
    for step, (b_name, b_x, b_y) in enumerate(tqdm(dataloader)):
        b_x = b_x.cuda()
        b_y = b_y.cuda()

        bi_logits, y_hat, bi_x_grad = bi_model.forward(b_x)
        img_path, raw_img, bbox = get_raw_imgs(b_name, dataset)
        final_cam = F.upsample(bi_x_grad,
                               size=[raw_img.size[1], raw_img.size[0]],
                               mode='bilinear',
                               align_corners=True)

        norm_cam_np = get_max_binary_area(
            bi_model.norm_grad_2_binary(
                final_cam.detach()).squeeze().data.numpy())
        draw_raw, iou = cal_iou(norm_cam_np, bbox, raw_img.copy())
        # plot_raw_cam_bi(raw_img, draw_raw, bi_x_grad, norm_cam_np)

        iou_result.append(iou > 0.5)
        classify_result.append(y_hat.item() == b_y.item())

    print('cls acc: ' + str(np.array(classify_result).mean()))
    print('iou: ' +
          str((np.array(iou_result) * np.array(classify_result)).mean()))
Example #3
0
def get_obj_with_no_train():
    dataset = CUB_Cls(root_dir=args.data_root_path,
                      train_data=args.train_data_path,
                      val_data=args.val_data_path,
                      test_data=args.test_data_path,
                      mode='test')
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    bi_model = get_bi_vgg(pretrained=True, trained=True, inference=True)
    bi_model.to_inference()
    bi_model.cuda()

    linear_model = get_linear_vgg(pretrained=True, inference=True)
    linear_model.cuda()

    for step, (b_name, b_x, b_y) in enumerate(dataloader):
        b_x = b_x.cuda()
        b_y = b_y.cuda()

        F_b_x = F.upsample(b_x,
                           size=(224, 224),
                           mode='bilinear',
                           align_corners=True)

        img_path, raw_img, bbox = get_raw_imgs(b_name, dataset)
        bi_logits, y_hat, bi_x_grad = bi_model.forward(b_x)
        bi_norm_grad = get_max_binary_area(
            bi_model.norm_grad_2_binary(bi_x_grad).numpy())
        norm_x_grad = linear_model.forward(F_b_x)

        plt.imshow(raw_img)
        plt.show()
        plt.imshow(bi_norm_grad[0])
        plt.show()
        plt.imshow(norm_x_grad[0].cpu().data.numpy())
        plt.show()
        print()
Example #4
0
def bi_self_train():
    dataset = CUB_BI(root_dir=args.data_root_path,
                     train_data=args.train_data_path,
                     val_data=args.val_data_path,
                     test_data=args.test_data_path,
                     nature_data=args.data_root_path + 'natures/',
                     mode='train')
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    val_dataset = CUB_BI(root_dir=args.data_root_path,
                         train_data=args.train_data_path,
                         val_data=args.val_data_path,
                         test_data=args.test_data_path,
                         nature_data=args.data_root_path + 'natures/',
                         mode='val')
    val_dataloader = DataLoader(val_dataset,
                                batch_size=args.batch_size,
                                shuffle=False)

    loss_func = torch.nn.BCELoss()

    model = get_bi_vgg(pretrained=True, freeze_vgg=True)
    model.cuda()

    best_test_acc = 0.0
    best_iou = 0.0
    for epoch in range(args.epoch):
        cur_opt = decrease_lr_by_epoch(epoch, model, args)
        for step, (b_name, b_x, b_y) in enumerate(dataloader):
            b_x = b_x.cuda()
            b_y = b_y.type(torch.FloatTensor).cuda()

            logits, y_hat = model.forward(b_x)
            loss = loss_func(logits, b_y)

            cur_opt.zero_grad()
            loss.backward()
            cur_opt.step()

            train_acc = cal_sigmoid_acc(y_hat, b_y)

            print('mode: train | ' + 'epoch ' + str(epoch) + ' | ' + 'loss: ' +
                  str(loss.cpu().data.numpy()) + 'train acc: ' +
                  str(train_acc) + ' | best_test_acc: ' + str(best_test_acc) +
                  ' | best iou: ' + str(best_iou))

            if step % 50 == 0:
                model.to_inference()
                acc = 0.0
                iou = 0.0
                for step, (b_name, b_x, b_y,
                           bbox) in enumerate(val_dataloader):
                    b_x = b_x.cuda()
                    b_y = b_y.cuda()

                    logits, y_hat, x_grad = model.forward(b_x)
                    acc = cal_sigmoid_acc(y_hat, b_y)
                    norm_cam_np = get_max_binary_area(
                        model.norm_grad_2_binary(
                            x_grad.detach()).squeeze().data.numpy())

                    for i in range(norm_cam_np.shape[0]):
                        iou += get_iou(norm_cam_np[i], bbox[i])

                if acc > best_test_acc:
                    best_test_acc = acc

                if (iou / b_x.size(0)) > best_iou:
                    best_iou = (iou / b_x.size(0))

                torch.save(model, '../Save/model/bi_cam_background.pt')
                model.close_inference()
Example #5
0
def classify_train():
    dataset = CUB_Cls(root_dir=args.data_root_path,
                      train_data=args.train_data_path,
                      val_data=args.val_data_path,
                      test_data=args.test_data_path,
                      mode='train',
                      img_size=224)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    val_dataset = CUB_Cls(root_dir=args.data_root_path,
                          train_data=args.train_data_path,
                          val_data=args.val_data_path,
                          test_data=args.test_data_path,
                          mode='val',
                          img_size=224)
    val_dataloader = DataLoader(val_dataset,
                                batch_size=args.batch_size * 10,
                                shuffle=False)

    bi_model = get_bi_vgg(pretrained=True, trained=True, inference=True)
    bi_model.to_inference()
    bi_model.cuda()

    model = get_semi_vgg(pretrained=True, trained=False, inference=False)
    model.cuda()

    cls_loss = torch.nn.CrossEntropyLoss()

    best_test_acc = 0.0
    for epoch in range(args.epoch):
        cur_opt = decrease_lr_by_epoch(epoch, model, args, fine_tune=True)
        for step, (b_name, b_x, b_y) in enumerate(dataloader):
            b_x = b_x.cuda()
            b_y = b_y.cuda()

            logits, cam = model.forward(b_x)
            bi_logits, y_hat, bi_x_grad = bi_model.forward(b_x)
            norm_largest_grad = torch.from_numpy(
                get_max_binary_area(
                    bi_model.norm_grad_2_binary(bi_x_grad).data.numpy())).type(
                        torch.FloatTensor).cuda()

            classify_loss = cls_loss(logits, b_y)
            semi_loss = model.cal_element_loss(norm_largest_grad, cam)

            train_acc = cal_single_label_acc(logits, b_y)
            cur_opt.zero_grad()
            classify_loss.backward(retain_graph=True)
            model.freeze_vgg = True
            semi_loss.backward()
            cur_opt.step()
            model.freeze_vgg = False

            # if step % 500 == 0:
            #     plt.imshow(b_x[0].cpu().data.numpy().transpose(1, 2, 0))  # raw img
            #     plt.savefig('../Save/images/raw.png')
            #     plt.imshow(bi_x_grad[0].squeeze().cpu().data.numpy(), cmap='hot')  # bi_x_grad
            #     plt.savefig('../Save/images/bi_x_grad.png')
            #     plt.imshow(norm_largest_grad[0].cpu().data.numpy(), cmap='hot')  # norm_largest_grad
            #     plt.savefig('../Save/images/norm_largest_grad.png')
            #     plt.imshow(cam[0].squeeze().cpu().data.numpy(), cmap='hot')  # cam
            #     plt.savefig('../Save/images/cam.png')

            print('mode: train | ' + 'epoch ' + str(epoch) + ' | ' +
                  'cls loss: ' + str(classify_loss.item()) + ' bce loss: ' +
                  str(semi_loss.item()) + ' train acc: ' + str(train_acc) +
                  ' | best_test_acc: ' + str(best_test_acc))

            if step % 50 == 0:
                with torch.no_grad():
                    acc = 0.0
                    for step, (b_name, b_x, b_y) in enumerate(val_dataloader):
                        b_x = b_x.cuda()
                        b_y = b_y.cuda()

                        logits, cam = model.forward(b_x)
                        acc = cal_single_label_acc(logits, b_y)

                    if acc >= best_test_acc:
                        best_test_acc = acc
                        torch.save(model,
                                   '../Save/model/semi_model_vgg_back.pt')