adam = Adam(lr=lr, beta_1=0.9, beta_2=0.999, decay=0.0) model.compile(loss=args.loss, optimizer=adam, metrics=['accuracy']) output = model(a) print("Featurizer: %s" % args.featurizer) print("\n=================================") print("Simple Neural Network Model") print("=================================\n") model.summary() print("Kernel regularizer: %s %s" % (args.kernel_regularizer, args.regularizer_param)) print("Dropout rate: %s" % args.dropout_rate) print("Loss function: %s" % args.loss) print("Optimizer functions: %s" % args.optimizer) print("Number of epochs: %s" % args.epochs) print("Learning rate: %s" % lr) print () model = model_func.nn_training_history(model, X, Y, args.epochs, args.batch_size) general.check_path_exists(save_model_path) model_func.save_model(model, save_model_path, neural_network=1) print("\nExiting program.") sys.stdout.close()
if method in ['simplenn']: neural_network = True if args.layer_dim == 3: layers_dim = [2048, 128, 8, 4] activation = ['relu', 'softmax', 'sigmoid'] elif args.layer_dim == 4: layers_dim = [2048, 512, 128, 8, 4] activation = ['relu', 'tanh', 'softmax', 'sigmoid'] elif args.layer_dim == 5: layers_dim = [2048, 512, 128, 16, 8, 4] activation = ['relu', 'tanh', 'softmax', 'tanh', 'sigmoid'] model = model_func.define_model(method, layers_dim, activation) elif method in ['convnn']: neural_network = method feature_length = X.shape[1] model = model_func.define_model(method, feature_length) else: model = model_func.define_model(method, model_param) model = model_func.train_model(model, num_split, seed, X, Y, neural_network=neural_network) if save: save_filepath = './saved_model/14_ecfp/' + "%s_%s_%s.h" % ( method, args.dataset[:args.dataset.rfind('.')], args.filename_append) model_func.save_model(model, save_filepath, neural_network) print("\nExiting program.")
layers_dim = [X.shape[1], 512, 128, 32, 8, Y.shape[1]] activation = ['relu', 'relu', 'relu', 'relu', 'sigmoid'] epochs = args.epochs print("Number of epochs:", epochs) model_func.define_model(method) model = model_func.build_simplenn_model(layers_dim=layers_dim, activation=activation, loss=args.loss, optimizer=args.optimizer) else: epochs = 0 model = model_func.define_model(method, model_param) model = model_func.train_model(model, num_split, seed, X, Y, neural_network_epochs=epochs) if args.save_model: save_filepath = './saved_model/' + filename + '.h' general.check_path_exists(save_filepath) model_func.save_model(model, save_filepath, epochs) print("\nExiting program.") sys.stdout.close()