def load(self, filename): """ Load the model """ f = open(filename, "r") data = json.load(f) f.close() self.Nodes = data["Nodes"] self.W = [np.array(w) for w in data["W"]] self.B = [np.array(b) for b in data["B"]]
def save(self, filename): """ Save the model to the file 'filename`. """ data = {"Nodes": self.Nodes, "W": [w.tolist() for w in self.W], "B": [b.tolist() for b in self.B]} f = open(filename, "w") json.dump(data, f) f.close()
def InitTimezone(self): langlist = [] f = open('/opt/installer/zone.csv') lines = f.read().split('\n') for line in lines: words = line.split("\"") if len(words) >= 5: langlist.append(words[5]) langlist.sort() for lang in langlist: self.Timezone.Append(lang) f.close()
def loadBadCh(self): filename = os.path.join(self.pathName, 'Artifacts', 'badChannels.txt') if os.path.exists(filename): with open(filename) as f: badChannels = f.read() print 'Bad Channels : {}'.format(badChannels) else: os.mkdir(os.path.join(self.pathName, 'Artifcats')) with open(filename, 'w') as f: f.write('') f.close() badChannels = [] return badChannels
def getSdbCsv(self,fileName): try: f = open(fileName, 'rb') reader = csv.reader(f) header = reader.next() for row in reader: car = Car() car.get_sdb_csv(row,header) self.cars[car.id] = car except csv.Error, e: f.close() sys.exit('file %s, line %d: %s' % (fileName, reader.line_num, e))
def updateDeviceList(self): if self.spectrometer: #self.selected_model['iManufacturer']=='Seabreeze': functions.close(self.spectrometer) self.instr_list.clear() self.instr_list.addItem('Instruments:') self.device_models, self.device_list = functions.find_devices() for ii in range(1, (1 + len(self.device_models))): if self.device_models[str( ii)]['idVendor'] + ':' + self.device_models[str( ii)]['idProduct'] == '0xbd7:0xa012': self.device_name.append('StellarNet') else: self.device_name.append( self.device_models[str(ii)]['idVendor'] + ':' + self.device_models[str(ii)]['idProduct']) self.instr_list.addItem(self.device_name[ii - 1])
def writeCarsData2Csv(self, filename,data, mode,historyFile): global header #Es para que solo escriba la cabecera la primera vez if historyFile and os.path.isfile(filename): header = False f = open(filename, mode) csvf = csv.DictWriter(f, Car.PARS.keys(), restval='', extrasaction='raise') if header: csvf.writeheader() for car in data.values(): csvf.writerow(car.get_state_dict()) f.close() header = True
def get_cars_from_csv(self,filename,repeated = False): try: f = open(filename, 'rb') reader = csv.reader(f) if header: reader.next() for row in reader: car = Car() car.get_from_csv(row) if repeated: id = car.id+"_"+str(car.state['dtime']) self.cars[id] = car else: self.cars[car.id] = car except csv.Error, e: f.close() sys.exit('file %s, line %d: %s' % (filename, reader.line_num, e))
def handle_bar(timer, data, info, init_cash, transaction, detail_last_min, memory): if timer == 0: memory.status = 0 # -1, stop loss; 0, ready; 1, open position_new = detail_last_min[0] if memory.status == -1: if (timer - memory.stop_loss_time) % 120 == 0: memory.status = 0 elif memory.status == 0: # ready to open grd = [0, 0] grd[0] = gradient(asset_index1, data) grd[1] = gradient(asset_index2, data) delta = grd[0] - grd[1] if abs(delta) > 3 * transaction: # just to ensure interest current_trend = trend(asset_index1, asset_index2, grd, data) # trend detection index = decision(delta, current_trend, asset_index1, asset_index2) # item decision operate_index = index[0] target_index = index[1] memory.operate_price = np.mean(data[operate_index, 0:3]) memory.target_price = np.mean(data[target_index, 0:3]) memory.operate_index = operate_index memory.target_index = target_index memory.operate_time = timer memory.trend = current_trend position_new = operation(data, detail_last_min, info, operate_index, transaction, current_trend, underwear) memory.position = position_new memory.top = detail_last_min[4] - underwear memory.total = detail_last_min[4] memory.status = 1 else: memory.top = peak_update(detail_last_min, memory) if (detail_last_min[4] - memory.top) / memory.top < -0.1: # stop loss position_new = np.zeros(13, dtype=np.int) memory.stop_loss_time = timer memory.status = -1 print("stop loss") if close(detail_last_min, memory, timer, data): # close out position_new = np.zeros(13, dtype=np.int) memory.status = 0 if timer > 8300: print('deal') return position_new, memory
def stop(self): functions.close(self.spectrometer) self.goto_time_zero(self.axis)
def close_app(self): functions.close(self.spectrometer) # closes window self.close()
car.get_from_csv(row) if repeated: id = car.id+"_"+str(car.state['dtime']) self.cars[id] = car else: self.cars[car.id] = car except csv.Error, e: f.close() sys.exit('file %s, line %d: %s' % (filename, reader.line_num, e)) except IOError, e: return except StopIteration: f.close() return return self.cars # """ # Carga la lista de taxis en los diccionarios # """ def getCarsFromPreviousHist(self,rows): for row in rows: car = Car() car.get_from_csv(row) self.cars[car.id] = car return self.cars
s_area=f.square_area(3,4) print(s_area) ###############FILE HANDLING############### import os if os.path.exists("C://python notes//aa.txt"): os.remove("C://python notes\\aa.txt") else: print("file does not exist") ########### f=open("C://python notes\\a.txt","w") f.write("adding some data to the file. ") f.close() f=open("C://python notes//a.txt","r") print(f.readline()) f=open("C://python notes//a.txt","a") f.write("Adding some more data!\n yes.") f=open("C://python notes//a.txt","r") print(f.readline()) import os os.rmdir("C://python notes//AA") import os if os.path.exists("C://python notes//aa.txt"):