def make_json(): '''make a json file for the team''' f.load_tsv('students') teams = c.df['students'].groupby(['group']).count().reset_index() max_member_count = teams['user'].max() c.df['students'].dropna(how='any', subset=['user'], inplace=True) # add a column with user - first last for row in c.df['students'].itertuples(): def list_name(row): return str(row.user) + " - " + str(row.firstname) + " " + str(row.lastname) c.df['students']['list_name'] = c.df['students'].apply(list_name, axis=1) # create a list of teams to iterate through team_list = f.create_list(teams, "group") with open(c.f['json'], 'w') as out: for team in team_list: # get just the members of the team this_team_df = f.filter_row('students', 'group', team) print("\'" + team + "\': ", file=out, end='') this_team_list = [''] * max_member_count for i, row in enumerate(this_team_df.itertuples()): this_team_list[i] = row.list_name print(str(this_team_list) + ",", file=out) # remove the final comma with open(c.f['json'], 'rb+') as out: out.seek(-2, os.SEEK_END) out.truncate()
def feedback_tmc(): cfg = f.load_config() f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) f.pnt_info(c.msg["console_loading"]) teams = f.load_tsv('data_tmc') teams.drop_duplicates(subset=['list_team'], keep='first', inplace=True) teams = teams['list_team'] data_tmc = f.load_tsv('data_tmc') data_tmc.replace(cfg['tmc_chart']['find_labels'], cfg['tmc_chart']['replace_values'], inplace=True) tm_cols_tmc = [col for col in data_tmc.columns if 'contribution' in col] tm_cols_tmc.sort() tm_cols_tmc.insert(0, 'username') tm_cols_id = [w.replace('contribution', 'id') for w in tm_cols_tmc] f.pnt_info(c.msg["console_tmc"]) for team in teams: print(team) this_data = f.filter_row('data_tmc', 'list_team', team) team_header = this_data[tm_cols_id].values.tolist()[0] team_header[0] = 'reviews' team_data = this_data[tm_cols_tmc].values.tolist() this_conf_df = DataFrame.from_records( team_data, columns=team_header).set_index('reviews').dropna(axis=1, how='all') this_conf_df = this_conf_df.rename( columns=lambda x: re.sub(' - .*', '', x)).T this_anon_df = this_conf_df.rename(columns=lambda x: re.sub( 'u.*', cfg['tmc_chart']['anon_legend'], x)) shape = this_anon_df.shape this_anon_df['average'] = this_anon_df.mean(axis=1) this_conf_df['average'] = this_conf_df.mean(axis=1) f.make_tmc_chart(this_anon_df, c.d['charts'] + team + "_tmc_anon.png") f.make_tmc_chart(this_conf_df, c.d['charts'] + team + "_tmc_conf.png") format_tmc_feedback(team, 'conf', shape, this_data) format_tmc_feedback(team, 'anon', shape, this_data) f.pnt_notice(c.msg['console_complete'], os.path.basename(__file__)) all_conf = glob.glob(c.d['pdf'] + '/*_conf.pdf') all_conf.sort() merger = PdfFileMerger() for pdf in all_conf: merger.append(pdf) merger.write(c.f['all_conf']) merger.close()
def feedback_marks(): cfg = f.load_config() f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) f.pnt_info(c.msg["console_loading"]) # load in tsvs of needed fields marks_df = f.load_tsv('marks') # create a df of just the crit and the comments crit = f.filter_row('fields', 'field', 'crit_') comm = f.filter_row('fields', 'field', 'comment_') f.pnt_info(c.msg["console_creating_feedback_files"]) # create distribution charts for later if cfg['crit_display']['graph']: stats = f.make_crit_list(crit, marks_df) f.make_crit_chart(crit, stats, "na") # iterate through the marks file for record_row in marks_df.itertuples(): # decide whether to use the list_team or list_name field if cfg['feedback_type']['group']: this_record = record_row.list_team this_record_name = record_row.list_team else: this_record = record_row.user this_record_name = record_row.list_name f.pnt_console(this_record) # create the pandoc header with open(c.d['yaml'] + this_record + '.yaml', 'w') as out: f.pandoc_yaml(out, this_record_name) with open(c.d['css'] + this_record + '.css', 'w') as out: f.pandoc_css(out, this_record_name, 'anon') #open up a file to print to with open(c.d['md'] + this_record + '.md', 'w') as out: print("## " + cfg['pdf_messages']['comment_title'] + "{-}\n\n", file=out) for loop_row in comm.itertuples(): f.print_results_header(loop_row, out) f.print_results_text(loop_row, record_row, out) #loop through the crit columns according to app_config if cfg['crit_display']['text']\ or cfg['crit_display']['scale']\ or cfg['crit_display']['graph']: # start with indicator title and notes print("# " + cfg['pdf_messages']['indicator_title'] + "{-}\n\n", file=out) print(cfg['pdf_messages']['indicator_note'] + "\n\n", file=out) print(cfg['pdf_messages']['chart_note'] + "\n\n", file=out) for loop_row in crit.itertuples(): if cfg['crit_display']['text'] \ or cfg['crit_display']['scale'] \ or cfg['crit_display']['graph']: f.print_results_header(loop_row, out) if cfg['crit_display']['text']: f.print_results_text(loop_row, record_row, out) if cfg['crit_display']['scale']: f.print_results_scale(loop_row, record_row, out) if cfg['crit_display']['graph']: f.print_results_graph(loop_row, record_row, out) # if cfg['crit_display']['rubric_new_page']: # f.print_new_page(out) if cfg['crit_display']['rubric']: if cfg['rubric_display']['rubric_new_page']: print("# " + cfg['pdf_messages']['rubric_title'] + "{-}\n\n", file=out) else: print("## " + cfg['pdf_messages']['rubric_title'] + "{-}\n\n", file=out) print(cfg['pdf_messages']['rubric_note'] + "\n", file=out) f.print_results_rubric(record_row, this_record) print("\n", file=out) f.pandoc_html_single(this_record) # add the rubric if cfg['crit_display']['rubric']: files = [c.d['rubric'] + this_record + ".html"] with open(c.d['html'] + this_record + '.html', 'a') as outfile: for fname in files: with open(fname) as infile: outfile.write(infile.read()) f.pandoc_pdf(this_record) # print message to console - complete! f.pnt_notice(c.msg['console_complete'], os.path.basename(__file__))
def format_audit_feedback(team, kind): cfg = f.load_config() # open and create a file for the yaml with open(c.d['yaml'] + team + '.yaml', 'w') as out: f.pandoc_yaml(out, team) # open and create a file for the css with open(c.d['css'] + team + "_" + kind + '.css', 'w') as out: f.pandoc_css(out, team, kind) with open(c.d["md"] + team + '_audit_' + kind + '.md', 'w') as out: # layout the audit chart this_chart = c.d['charts'] + team + "_audit.png" print("\n\n# " + cfg['audit_pdf']['audit_chart_header'] + "\n\n", file=out) print('![](../../.' + this_chart + ')\n\n', file=out) print(cfg['audit_pdf']['audit_chart_caption'] + "\n\n", file=out) # set up the dfs for all of the clients crit = f.filter_row('fields', 'field', 'crit_') comment = f.filter_row('fields', 'field', 'comment_') f.many_eyes_dataframe_sort('data_self') f.many_eyes_dataframe_sort('data_shadow') self_df = f.load_tsv('data_self_sorted') shadow_df = f.load_tsv('data_shadow_sorted') tutor_df = c.df['data_tutor'] tutor_df.replace(cfg['audit_chart']['find_labels'], cfg['audit_chart']['replace_values'], inplace=True) client_df = c.df['data_client'] client_df.replace(cfg['audit_chart']['find_client_labels'], cfg['audit_chart']['replace_client_values'], inplace=True) # filter this team's data this_team_self_df = self_df[self_df['team'].str.contains(team)].copy() this_team_shadow_df = shadow_df[shadow_df['team'].str.contains( team)].copy() this_team_tutor_df = tutor_df[tutor_df['team'].str.contains( team)].copy() this_team_client_df = client_df[client_df['team'].str.contains( team, na=False)].copy() # deal with NAs this_team_self_df.fillna('', inplace=True) this_team_shadow_df.fillna('', inplace=True) this_team_tutor_df.fillna('', inplace=True) this_team_client_df.fillna('', inplace=True) #loop through the crit columns for j, row in crit.iterrows(): this_team_self_crit_df = this_team_self_df[ this_team_self_df['crit_text'].str.contains(row['label'])] this_team_shadow_crit_df = this_team_shadow_df[ this_team_shadow_df['crit_text'].str.contains(row['label'])] # loop through the comment columns f.print_comment_header(row, out) for k, c_row in this_team_self_crit_df.iterrows(): this_text = str(c_row['crit_comment']) if kind == 'conf': if (str(c_row['crit_comment']) == ""): # print messages if the comment is empty print("**Self Review - " + c_row['user'] + " (" + c_row['username'] + ")" + "**\n\n" + cfg['tmc_pdf']['member_no_comment'] + "\n\n", file=out) else: print("**Self Review - " + c_row['user'] + " (" + c_row['username'] + ")" + "**\n\n" + this_text + "\n\n", file=out) else: if (str(c_row['crit_comment']) == ""): print("**Self Review**\n\n" + cfg['tmc_pdf']['member_no_comment'] + "\n\n", file=out) else: print("**Self Review**\n\n" + this_text + "\n\n", file=out) for k, c_row in this_team_shadow_crit_df.iterrows(): this_text = str(c_row['crit_comment']) if kind == 'conf': if (str(c_row['crit_comment']) == ""): # print messages if the comment is empty print("**Shadow Review - " + c_row['user'] + " (" + c_row['username'] + ")" + "**\n\n" + cfg['tmc_pdf']['member_no_comment'] + "\n\n", file=out) else: print("**Shadow Review - " + c_row['user'] + " (" + c_row['username'] + ")" + "**\n\n" + this_text + "\n\n", file=out) else: if (str(c_row['crit_comment']) == ""): print("**Shadow Review**\n\n" + cfg['tmc_pdf']['member_no_comment'] + "\n\n", file=out) else: print("**Shadow Review**\n\n" + this_text + "\n\n", file=out) # print the anonymous comments for j, row in comment.iterrows(): this_field = row['field'] if this_field != 'comment_confidential': f.print_comment_header(row, out) for k, c_row in this_team_tutor_df.iterrows(): this_text = str(c_row[this_field]) print("**Tutor**\n\n" + this_text + "\n\n", file=out) for k, c_row in this_team_client_df.iterrows(): this_text = str(c_row[this_field]) print("**Client**\n\n" + this_text + "\n\n", file=out) # print the confidential comments if kind == 'conf': print("\n\n# Confidential feedback about the team progress", file=out) self_conf_df = c.df['data_self'].copy() this_team_self_conf_df = self_conf_df[self_df['team'].str.contains( team)] for j, row in this_team_self_conf_df.iterrows(): if (str(row['comment_confidential']) == ""): # print messages if the comment is empty print("**" + row['user'] + " (" + row['username'] + ")" + "**\n\n" + cfg['tmc_pdf']['member_no_comment'] + "\n\n", file=out) else: print("**" + row['user'] + " (" + row['username'] + ")" + "**\n\n" + str(row['comment_confidential']) + "\n\n", file=out)
def feedback_many_eyes(): cfg = f.load_config() # print message to console - starting! f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) # print message to console f.pnt_info(c.msg["console_loading"]) # load in tsvs of needed fields fields = f.load_tsv('fields') crit_levels = f.load_tsv('crit_levels') data_self = f.load_tsv('data_self') data_shadow = f.load_tsv('data_shadow') data_tutor = f.load_tsv('data_tutor') data_client = f.load_tsv('data_client') # create a df of just the crit and the comments crit = f.filter_row('fields', 'field', 'crit_') comm = f.filter_row('fields', 'field', 'comment_') # print message to console f.pnt_info(c.msg["console_creating_feedback_files"]) # load data and create list of teams teams = f.load_tsv('students') teams.drop_duplicates(subset=['group'], keep='first', inplace=True) # create a list of crit for access crit_list = [] for j, row in crit.iterrows(): crit_list.append(row['label']) # create a df for access for self and shadow f.many_eyes_dataframe_sort('data_self') f.many_eyes_dataframe_sort('data_shadow') self_df = f.load_tsv('data_self_sorted') shadow_df = f.load_tsv('data_shadow_sorted') # create a df to access for tutor comments tutor_df = c.df['data_tutor'] tutor_df.replace(cfg['audit_chart']['find_labels'], cfg['audit_chart']['replace_values'], inplace=True) # create a df to access for client comments client_df = c.df['data_client'] client_df.replace(cfg['audit_chart']['find_client_labels'], cfg['audit_chart']['replace_client_values'], inplace=True) # work through the many eyes data for eyes in cfg['many_eyes']['eyes']: this_array = 'class_' + eyes + '_ave' vars()[this_array] = [] # start a list for each eye class_self_ave = [] class_shadow_ave = [] class_tutor_ave = [] class_client_ave = [] #loop through the crit columns for j, row in crit.iterrows(): class_self_crit_df = self_df[self_df['crit_text'].str.contains( row['label'])] class_shadow_crit_df = shadow_df[shadow_df['crit_text'].str.contains( row['label'])] class_self_ave.append(class_self_crit_df['crit_val'].mean()) class_shadow_ave.append(class_shadow_crit_df['crit_val'].mean()) class_tutor_ave.append(tutor_df[row['field']].mean()) try: class_client_ave.append(client_df[row['field']].mean()) except: print("there was a key error") class_client_ave.append(0) # build a df for class averages class_ave_df = pd.DataFrame() class_ave_df['criterion'] = crit_list class_ave_df['self'] = class_self_ave class_ave_df['shadow'] = class_shadow_ave class_ave_df['tutor'] = class_tutor_ave class_ave_df['client'] = class_client_ave class_ave_df['class_ave'] = class_ave_df.mean(axis=1) class_ave_list = class_ave_df["class_ave"].values # create a team list to iterate through team_list = [] for i, row in teams.iterrows(): this_team = row['group'] team_list.append(this_team) f.pnt_info(c.msg["console_many_eyes"]) # for each team for team in team_list: # report to the console print(team) # create a df for summary stats this_team_self_df = self_df[self_df['team'].str.contains(team)] this_team_shadow_df = shadow_df[shadow_df['team'].str.contains(team)] this_team_tutor_df = tutor_df[tutor_df['team'].str.contains(team)] this_team_client_df = client_df[client_df['team'].str.contains( team, na=False)] # create lists for the averages crit_self_ave = [] crit_shadow_ave = [] crit_tutor_ave = [] crit_client_ave = [] #loop through the crit columns for j, row in crit.iterrows(): this_team_self_crit_df = this_team_self_df[ this_team_self_df['crit_text'].str.contains(row['label'])] this_team_shadow_crit_df = this_team_shadow_df[ this_team_shadow_df['crit_text'].str.contains(row['label'])] # add the mean to the list crit_self_ave.append(this_team_self_crit_df['crit_val'].mean()) crit_shadow_ave.append(this_team_shadow_crit_df['crit_val'].mean()) crit_tutor_ave.append(this_team_tutor_df[row['field']].mean()) # deal with empty client df entries if this_team_client_df.empty: for l, row in crit.iterrows(): crit_client_ave.append('0') else: for l, row in crit.iterrows(): try: crit_client_ave.append( this_team_client_df[row['field']].mean()) except KeyError: crit_client_ave.append(0) # create a df for the team to generate a graph this_team_ave_df = pd.DataFrame() this_team_ave_df['criterion'] = crit_list this_team_ave_df['self'] = crit_self_ave this_team_ave_df['shadow'] = crit_shadow_ave this_team_ave_df['tutor'] = crit_tutor_ave this_team_ave_df['client'] = crit_client_ave # report the team ave and the class ave this_team_ave_df['team_ave'] = this_team_ave_df.mean(axis=1) this_team_ave_df['class_ave'] = class_ave_list # now create the team chart this_team_ave_df.set_index("criterion", drop=True, inplace=True) f.make_audit_chart(this_team_ave_df, c.d['charts'] + team + "_audit.png") # run the format audit feedback for anon/conf as defined below format_audit_feedback(team, 'conf') format_audit_feedback(team, 'anon') # compile the anon feedback for students files = [ c.d['files'] + 'text_preamble.md', c.d['md'] + team + "_tmc_anon.md", c.d['md'] + team + "_audit_anon.md", c.d['files'] + 'text_changelog.md' ] with open( c.d['md'] + team + "_" + cfg['assignment']['assignment_short'] + "_audit_anon.md", 'w') as outfile: for fname in files: with open(fname) as infile: outfile.write(infile.read()) # compile the conf feedback for teaching team files = [ c.d['md'] + team + "_tmc_conf.md", c.d['md'] + team + "_audit_conf.md" ] with open( c.d['md'] + team + "_" + cfg['assignment']['assignment_short'] + "_audit_conf.md", 'w') as outfile: for fname in files: with open(fname) as infile: outfile.write(infile.read()) # convert md to pdf f.pandoc_html_toc( team + "_" + cfg['assignment']['assignment_short'] + "_audit_anon", team, 'anon') f.pandoc_html_toc( team + "_" + cfg['assignment']['assignment_short'] + "_audit_conf", team, 'conf') f.pandoc_pdf(team + "_" + cfg['assignment']['assignment_short'] + "_audit_anon") f.pandoc_pdf(team + "_" + cfg['assignment']['assignment_short'] + "_audit_conf")
def feedback_course(): cfg = f.load_config() f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) f.pnt_info(c.msg["console_loading"]) tutors = f.load_tsv('feedback_course') tutors.drop_duplicates(subset=['tutor_name'], keep='first', inplace=True) feedback_course_df = f.load_tsv('feedback_course') crit_levels = f.load_tsv('crit_levels') crit = f.filter_row('fields', 'field', 'crit_') comm = f.filter_row('fields', 'field', 'comment_') tutor_list = f.create_list(tutors, 'tutor_name') crit_levels_list = f.create_list(crit_levels, 'index') f.pnt_info(c.msg["console_creating_feedback_files"]) for i, row in crit.iterrows(): this_crit = row['field'] this_crit_list = [] for tutor in tutor_list: this_tutor_df = feedback_course_df[ feedback_course_df['tutor_name'].str.contains(tutor)] this_tutor_crit = [] this_header = [tutor] for val in crit_levels_list: this_sum = (this_tutor_df[this_crit] == val).sum() this_tutor_crit.append(this_sum) this_crit_list.append(this_tutor_crit) this_crit_this_tutor = pd.DataFrame(this_tutor_crit, columns=this_header, index=crit_levels_list) f.make_feedback_chart( this_crit_this_tutor, c.d['charts'] + this_crit + "_" + tutor + ".png") this_crit_all_tutors = pd.DataFrame(this_crit_list, columns=crit_levels_list, index=tutor_list) this_crit_all_tutors = this_crit_all_tutors.T f.make_feedback_chart(this_crit_all_tutors, c.d['charts'] + this_crit + "_all.png") with open(c.d['yaml'] + 'all.yaml', 'w') as out: f.pandoc_yaml(out, 'All Tutors') with open(c.d['css'] + 'all_conf.css', 'w') as out: f.pandoc_css(out, 'Course Feedback', 'conf') # open up a file to print to with open(c.d['md'] + 'all_charts.md', 'w') as out: print("# Quantitative Feedback\n\n", file=out) for i, row in crit.iterrows(): this_crit = str(row['field']) this_text = str(row['description']) this_image = c.d['charts'] + this_crit + "_all.png" print("### " + this_text + "\n\n", file=out) print("![](../../." + this_image + ")\n\n", file=out) confidential_files = [c.d['md'] + 'all_charts.md'] for tutor in tutor_list: print(tutor) this_tutor_df = feedback_course_df[ feedback_course_df['tutor_name'].str.contains(tutor)] with open(c.d['yaml'] + tutor + '.yaml', 'w') as out: f.pandoc_yaml(out, tutor) with open(c.d['css'] + tutor + '.css', 'w') as out: f.pandoc_css(out, tutor, 'anon') f_out = open(c.d['md'] + tutor + '.md', 'w') with f_out as out: try: for i, row in crit.iterrows(): this_crit = str(row['field']) this_text = str(row['description']) this_image = c.d[ 'charts'] + this_crit + "_" + tutor + ".png" print("### " + this_text + "\n", file=out) print("![](../../." + this_image + ")\n", file=out) for i, row in comm.iterrows(): this_field = str(row['field']) this_description = str(row['description']) this_df = this_tutor_df[['tutor_name', this_field]].dropna() if this_field != 'comment_confidential': print("\n\n## " + this_description + "\n\n", file=out) for i, i_row in this_df.iterrows(): this_text = str(i_row[this_field]) if (this_text != "" or this_text != "nan" or this_text != "N/A"): this_text_clean = BeautifulSoup( this_text, features="html5lib") print("**Student Comment**\n\n" + this_text_clean.get_text() + "\n\n", file=out) finally: f_out.close() f.pandoc_html_single(tutor) f.pandoc_pdf(tutor) with open(c.d['md'] + tutor + '_conf.md', 'w') as out: print("\n\n# Feedback for " + tutor + "\n\n", file=out) confidential_files.append(c.d['md'] + tutor + '_conf.md') # loop through the comment columns for i, row in comm.iterrows(): this_field = str(row['field']) this_description = str(row['description']) this_df = this_tutor_df[['tutor_name', 'user', this_field]].dropna() print("\n\n## " + this_description + "\n\n", file=out) for i, i_row in this_df.iterrows(): this_text = str(i_row[this_field]) this_user = str(i_row['user']) if (this_text != "" or this_text != "nan" or this_text != "N/A"): this_text_clean = BeautifulSoup(this_text, features="html5lib") print("**" + this_user + "**\n\n" + this_text_clean.get_text() + "\n\n", file=out) with open(c.d['md'] + "all.md", 'w') as outfile: for fname in confidential_files: with open(fname) as infile: outfile.write(infile.read()) f.pandoc_html_toc('all', 'all', 'conf') f.pandoc_pdf('all') f.pnt_notice(c.msg['console_complete'], os.path.basename(__file__))
def analysis_many_eyes(): cfg = f.load_config() # print message to console - starting! f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) # print message to console f.pnt_info(c.msg["console_loading"]) # load in tsvs of needed fields student = f.load_tsv('students') student.drop_duplicates(keep='first', inplace=True) student.dropna(how='any', subset=['user'], inplace=True) students = student.copy() fields = f.load_tsv('fields') crit_levels = f.load_tsv('crit_levels') data_self = f.load_tsv('data_self') data_shadow = f.load_tsv('data_shadow') data_tutor = f.load_tsv('data_tutor') data_client = f.load_tsv('data_client') # create a df of just the crit and the comments crit = f.filter_row('fields', 'field', 'crit_') comm = f.filter_row('fields', 'field', 'comment_') # print message to console f.pnt_info(c.msg["console_reading_feedback_files"]) # load data and create list of teams teams = f.load_tsv('students') teams.drop_duplicates(subset=['group'], keep='first', inplace=True) # create a team list to iterate through team_list = [] for i, row in teams.iterrows(): this_team = row['group'] team_list.append(this_team) # create a list of crit for access crit_list = [] crit_list_header = ['team', 'role'] for j, row in crit.iterrows(): crit_list.append(row['label']) crit_list_header.append(row['label']) # create a list of comments for access comment_list = f.create_list(comm, 'field') # create a df for access for self and shadow f.many_eyes_dataframe_sort('data_self') f.many_eyes_dataframe_sort('data_shadow') self_df = f.load_tsv('data_self_sorted') shadow_df = f.load_tsv('data_shadow_sorted') # create a df to access for tutor comments tutor_df = c.df['data_tutor'] tutor_df.replace(cfg['audit_chart']['find_labels'], cfg['audit_chart']['replace_values'], inplace=True) # create a df to access for client comments client_df = c.df['data_client'] client_df.replace(cfg['audit_chart']['find_client_labels'], cfg['audit_chart']['replace_client_values'], inplace=True) f.pnt_info(c.msg["console_many_eyes"]) print("Cleaning the self data...") for i, row in self_df.iterrows(): for readability_list in cfg['analytics']['readability_stats']: f.readability_stats('data_self_sorted', row, i, 'crit_comment', readability_list[0], readability_list[1], readability_list[2]) print("Cleaning the shadow data...") for i, row in shadow_df.iterrows(): for readability_list in cfg['analytics']['readability_stats']: f.readability_stats('data_shadow_sorted', row, i, 'crit_comment', readability_list[0], readability_list[1], readability_list[2]) team_stats_list = [] # report to the console print('Generating team stats...') # for each team for team in team_list: # work through the many eyes data for eye in cfg['many_eyes']['eyes']: this_stats_list = [team, eye] this_df = locals()[eye + "_df"] this_crit_df = this_df[this_df['team'].str.contains(team, na=False)] if not this_crit_df.empty: for j, row in crit.iterrows(): if eye == 'self' or eye == 'shadow': this_crit_df = this_df[ this_df['crit_text'].str.contains(row['label'])] this_stats_list.append(this_crit_df['crit_val'].mean()) else: try: this_stats_list.append( this_crit_df[row['field']].mean()) except: this_stats_list.append(0) team_stats_list.append(this_stats_list) team_stats = pd.DataFrame(team_stats_list, columns=crit_list_header) team_stats_ave_list = [] for team in team_list: this_team_stats = team_stats[team_stats['team'].str.contains(team)] this_team_ave_list = [team, 'average'] for crit in crit_list: this_team_crit_mean = this_team_stats[crit].mean() this_team_ave_list.append(this_team_crit_mean) team_stats_ave_list.append(this_team_ave_list) team_stats_ave_df = pd.DataFrame(team_stats_ave_list, columns=crit_list_header) frames = [team_stats, team_stats_ave_df] team_stats_df = pd.concat(frames) crit = f.filter_row('fields', 'field', 'crit_') # report to the console print('Generating team charts...') for team in team_list: print(team) #loop through the crit columns for i, row in crit.iterrows(): this_crit_label = row['label'] this_crit_field = row['field'] this_team_crit_list = [] this_team_crit_header = ['role', 'value'] for eye in cfg['many_eyes']['eyes']: this_df = locals()[eye + "_df"] this_team_df = this_df[this_df['team'].str.contains(team, na=False)] if not this_team_df.empty: if eye == 'self' or eye == 'shadow': this_team_crit_df = this_team_df[this_team_df[ 'crit_text'].str.contains(this_crit_label)] for j, row in this_team_crit_df.iterrows(): this_team_crit_list.append([eye, row['crit_val']]) else: for j, row in this_team_df.iterrows(): try: this_team_crit_list.append( [eye, row[this_crit_field]]) except: this_team_crit_list.append([eye, 0]) this_team_crit_df = pd.DataFrame(this_team_crit_list, columns=this_team_crit_header).T this_team_crit_df.columns = this_team_crit_df.iloc[0] this_team_crit_df = this_team_crit_df.iloc[1:].rename_axis(None, axis=1) this_team_crit_df['average'] = this_team_crit_df.mean(axis=1) f.make_audit_crit_chart( this_team_crit_df, c.d['charts'] + team + "_" + this_crit_field + "_audit.png") self_crit_val_diff_list = [] self_crit_val_abs_list = [] self_wps_list = [] for i, row in self_df.iterrows(): this_crit_val = row['crit_val'] this_crit_text = row['crit_text'] this_team = row['team'] this_wc = row['wc'] this_sc = row['sc'] this_team_row = team_stats_ave_df[ team_stats_ave_df['team'].str.contains(this_team)] # this_crit_ave = this_team_row.iloc[0][this_crit_text] this_crit_ave = 0 this_diff = this_crit_val - this_crit_ave this_diff_abs = abs(this_diff) self_crit_val_diff_list.append(this_diff) self_crit_val_abs_list.append(this_diff_abs) this_wps = this_wc / this_sc self_wps_list.append(this_wps) self_df['crit_val_diff'] = self_crit_val_diff_list self_df['crit_val_abs'] = self_crit_val_abs_list self_df['wps'] = self_wps_list shadow_crit_val_diff_list = [] shadow_crit_val_abs_list = [] shadow_wps_list = [] for i, row in shadow_df.iterrows(): print(shadow_df) this_crit_val = row['crit_val'] this_crit_text = row['crit_text'] this_team = row['team'] this_wc = row['wc'] this_sc = row['sc'] this_team_row = team_stats_ave_df[ team_stats_ave_df['team'].str.contains(this_team)] if not this_team_row.empty: this_crit_ave = this_team_row.iloc[0][this_crit_text] else: this_crit_ave = 0 this_diff = this_crit_val - this_crit_ave this_diff_abs = abs(this_diff) shadow_crit_val_diff_list.append(this_diff) shadow_crit_val_abs_list.append(this_diff_abs) this_wps = this_wc / this_sc shadow_wps_list.append(this_wps) shadow_df['crit_val_diff'] = shadow_crit_val_diff_list shadow_df['crit_val_abs'] = shadow_crit_val_abs_list shadow_df['wps'] = shadow_wps_list self_df['wc_pct_rank'] = self_df.wc.rank(pct=True) self_df['wps_pct_rank'] = self_df.sc.rank(pct=True) self_df['flesch_pct_rank'] = self_df.flesch.rank(pct=True) self_df['crit_val_diff_rank'] = self_df.crit_val_diff.rank(pct=True) shadow_df['wc_pct_rank'] = shadow_df.wc.rank(pct=True) shadow_df['wps_pct_rank'] = shadow_df.sc.rank(pct=True) shadow_df['flesch_pct_rank'] = shadow_df.flesch.rank(pct=True) shadow_df['crit_val_diff_rank'] = shadow_df.crit_val_diff.rank(pct=True) wc_score = [-2, -1, 0, 1, 2] wps_score = [-2, -1, 0, 1, 2] flesch_score = [2, 1, 0, -1, -2] cvd_score = [2, 1, 0, -1, -2] wc_score_actual = [-2, -1, 0, 1, 2] score_pct = [0.2, 0.4, 0.6, 0.8, 1.0] score_act = [25, 50, 100, 200, 10000] score_dataframe(self_df, 'wc_pct_rank', 'wc_score', wc_score, score_pct) score_dataframe(shadow_df, 'wc_pct_rank', 'wc_score', wc_score, score_pct) score_dataframe(self_df, 'wps_pct_rank', 'wps_score', wps_score, score_pct) score_dataframe(shadow_df, 'wps_pct_rank', 'wps_score', wps_score, score_pct) score_dataframe(self_df, 'flesch_pct_rank', 'flesch_score', flesch_score, score_pct) score_dataframe(shadow_df, 'flesch_pct_rank', 'flesch_score', flesch_score, score_pct) score_dataframe(self_df, 'crit_val_diff_rank', 'crit_val_score', cvd_score, score_pct) score_dataframe(shadow_df, 'crit_val_diff_rank', 'crit_val_score', cvd_score, score_pct) score_dataframe(self_df, 'wc', 'wc_score_act', wc_score, score_act) score_dataframe(shadow_df, 'wc', 'wc_score_act', wc_score, score_act) col_chart_list = ["wc", "wps", "flesch", "crit_val_diff"] for col in col_chart_list: if col == "flesch": chart_min = 0 chart_max = 100 elif col == "crit_val_diff": chart_min = -5 chart_max = 5 else: chart_min = 0 self_max = self_df[col].max() shadow_max = shadow_df[col].max() if self_max > shadow_max: this_max = self_max else: this_max = shadow_max chart_max = int(round(this_max / 20)) * 20 f.make_col_chart(self_df, col, 'self', chart_min, chart_max) f.make_col_chart(shadow_df, col, 'shadow', chart_min, chart_max) # for each team for i, row in students.iterrows(): # report to the console this_user = str(row['user']) this_first = str(row['firstname']) this_last = str(row['lastname']) self_team = str(row['group']) shadow_team = str(row['shadowteam']) print(this_user) this_self_df = self_df[self_df['username'].str.contains(this_user)] this_shadow_df = shadow_df[shadow_df['username'].str.contains( this_user)] if this_self_df.empty and this_shadow_df.empty: with open(c.d["md"] + str(this_user) + '.md', 'w') as out: print("## " + this_user + " - " + this_first + " " + this_last + "\n\n", file=out) print("**No reviews received.**\n\n", file=out) else: try: local_text_analysis(this_self_df, this_user, 'self') local_text_analysis(this_shadow_df, this_user, 'shadow') with open(c.d["md"] + str(this_user) + '.md', 'w') as out: print("## " + this_user + " - " + this_first + " " + this_last + "\n\n", file=out) print( "**This feedback report shows analytics on the feedback you gave in the review.**\n\n", file=out) print( "By considering the analytics in this report, you should get a sense of how your feedback compares to others.\n\n", file=out) print("# Project Audits\n\n", file=out) print("*Compare your review to others' perspectives.*\n\n", file=out) print("## Project Team: " + self_team + "\n\n", file=out) if this_self_df.empty: print("* No review submitted", file=out) else: for i, row in this_self_df.iterrows(): print("*Your review of " + str(row['crit_text']) + ":* **" + str(row['crit_desc']) + "**\n\n", file=out) this_crit = f.filter_row('fields', 'label', row['crit_text']) for j, j_row in this_crit.iterrows(): this_crit_field = j_row['field'] print("![](../../." + c.d['charts'] + self_team + "_" + this_crit_field + "_audit.png)\n\n", file=out) print("\n*Chart of all reviews of " + self_team + " for " + str(row['crit_text']) + "*\n\n", file=out) print("<div class=\"new-page\">.</div>", file=out) print("## Shadow Team: " + shadow_team + "\n\n", file=out) if this_shadow_df.empty: print("* No review submitted", file=out) else: for i, row in this_shadow_df.iterrows(): print("*Your review of " + str(row['crit_text']) + ":* **" + str(row['crit_desc']) + "**\n\n", file=out) this_crit = f.filter_row('fields', 'label', row['crit_text']) for j, j_row in this_crit.iterrows(): this_crit_field = j_row['field'] print("![](../../." + c.d['charts'] + shadow_team + "_" + this_crit_field + "_audit.png)\n\n", file=out) print("\n*Chart of all reviews of " + shadow_team + " for " + str(row['crit_text']) + "*\n\n", file=out) print("<div class=\"new-page\">.</div>", file=out) print("## Difference in review evaluations\n\n", file=out) print( "*A negative value means that your review was below the average of reviews; positive, above. '2' represents a 'full band', such as the difference between 'Baseline' and 'Acceptable'.*\n\n", file=out) this_head = ["Team", "Role"] this_self_list = [self_team, "Self"] this_shadow_list = [shadow_team, "Shadow"] if not this_self_df.empty: for i, row in this_self_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_self_list.append("**" + str( int(round(row['crit_val_diff'] * 4) / 4)) + "** half-bands") except: this_self_list.append("**N/A**") this_head.append("Class Average") try: this_self_list.append( str( int( round(this_self_df['crit_val_abs'].mean() * 4) / 4)) + " (self)") except: this_self_list.append("**N/A**") if not this_shadow_df.empty: for i, row in this_shadow_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_shadow_list.append("**" + str( int(round(row['crit_val_abs'] * 4) / 4)) + "** half-bands") except: this_self_list.append("**N/A**") this_head.append("Class Average") try: this_shadow_list.append( str( int( round(this_shadow_df['crit_val_abs'].mean( ) * 4) / 4)) + " (shadow)") except: this_shadow_list.append("**N/A**") this_html_df = pd.DataFrame( list(zip(this_head, this_self_list, this_shadow_list))).T this_html_df.columns = this_html_df.iloc[0] this_html_df = this_html_df.iloc[1:].rename_axis(None, axis=1) # this_html_df.set_index("Team",drop=True,inplace=True) print(this_html_df.to_html(), file=out) print("![](../../." + c.d['charts'] + "crit_val_diff_self.png)\n", file=out) print("![](../../." + c.d['charts'] + "crit_val_diff_shadow.png)\n", file=out) print( "\n*Top: Histogram of differences for self reviews.*", file=out) print( "*Bottom: Histogram of differences for shadow reviews.*\n\n", file=out) print("<div class=\"new-page\">.</div>", file=out) print("# Descriptive statistics about your comments\n\n", file=out) print("## Word Count\n\n", file=out) print( "The course guide requests you to complete 250-500 words per review.\n\n", file=out) print("*Table of your review word count statistics*\n\n", file=out) this_head = ["Team", "Role"] this_self_list = [self_team, "Self"] this_shadow_list = [shadow_team, "Shadow"] if not this_self_df.empty: for i, row in this_self_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_self_list.append( "**" + str(int(round(row['wc']))) + "** words") except: this_self_list.append("**N/A**") this_head.append("Class Average") try: this_self_list.append( str(int(round(this_self_df['wc'].mean()))) + " (self)") except: this_self_list.append("**N/A**") if not this_shadow_df.empty: for i, row in this_shadow_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_shadow_list.append( "**" + str(int(round(row['wc']))) + "** words") except: this_shadow_list.append("**N/A**") this_head.append("Class Average") try: this_shadow_list.append( str(int(round(this_shadow_df['wc'].mean()))) + " (shadow)") except: this_shadow_list.append("**N/A**") this_html_df = pd.DataFrame( list(zip(this_head, this_self_list, this_shadow_list))).T this_html_df.columns = this_html_df.iloc[0] this_html_df = this_html_df.iloc[1:].rename_axis(None, axis=1) # this_html_df.set_index("Team",drop=True,inplace=True) print(this_html_df.to_html(), file=out) print("![](../../." + c.d['charts'] + "wc_self.png)\n", file=out) print("![](../../." + c.d['charts'] + "wc_shadow.png)\n", file=out) print( "\n*Top: Histogram of word counts for self reviews.*", file=out) print( "*Bottom: Histogram of word counts for shadow reviews.*\n\n", file=out) print("<div class=\"new-page\">.</div>", file=out) print("## Words per Sentence Count\n\n", file=out) print( "Generally, shorter sentences are easier to read.\n\n", file=out) print( "*Table of your review words per sentence count statistics*\n\n", file=out) this_head = ["Team", "Role"] this_self_list = [self_team, "Self"] this_shadow_list = [shadow_team, "Shadow"] if not this_self_df.empty: for i, row in this_self_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_self_list.append( "**" + str(int(round(row['wps']))) + "** wps") except: this_self_list.append("**N/A**") this_head.append("Class Average") try: this_self_list.append( str(int(round(this_self_df['wps'].mean()))) + " (self)") except: this_self_list.append("**N/A**") if not this_shadow_df.empty: for i, row in this_shadow_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_shadow_list.append( "**" + str(int(round(row['wps']))) + "** wps") except: this_shadow_list.append("**N/A**") this_head.append("Class Average") try: this_shadow_list.append( str(int(round(this_shadow_df['wps'].mean()))) + " (shadow)") except: this_shadow_list.append("**N/A**") this_html_df = pd.DataFrame( list(zip(this_head, this_self_list, this_shadow_list))).T this_html_df.columns = this_html_df.iloc[0] this_html_df = this_html_df.iloc[1:].rename_axis(None, axis=1) # this_html_df.set_index("Team",drop=True,inplace=True) print(this_html_df.to_html(), file=out) print("![](../../." + c.d['charts'] + "wps_self.png)\n", file=out) print("![](../../." + c.d['charts'] + "wps_shadow.png)\n", file=out) print( "\n*Top: Histogram of sentence counts for self reviews.*", file=out) print( "*Bottom: Histogram of sentence counts for shadow reviews.*\n\n", file=out) print("<div class=\"new-page\">.</div>", file=out) print("## Flesch–Kincaid readability test\n\n", file=out) print( "Based on a score out of 100, lower scores are typically harder to read: scores below 50 are considered difficult to read. [More information on Wikipedia](https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests)\n\n", file=out) print( "*Table of your Flesch–Kincaid readability score statistics*\n\n", file=out) this_head = ["Team", "Role"] this_self_list = [self_team, "Self"] this_shadow_list = [shadow_team, "Shadow"] if not this_self_df.empty: for i, row in this_self_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_self_list.append( "**" + str(int(round(row['flesch']))) + "**") except: this_self_list.append("**N/A**") this_head.append("Class Average") try: this_self_list.append( str(int(round(this_self_df['flesch'].mean()))) + " (self)") except: this_self_list.append("**N/A**") if not this_shadow_df.empty: for i, row in this_shadow_df.iterrows(): try: this_head.append(str(row['crit_text'])) this_shadow_list.append( "**" + str(int(round(row['flesch']))) + "**") except: this_shadow_list.append("**N/A**") this_head.append("Class Average") try: this_shadow_list.append( str(int(round(this_shadow_df['flesch'].mean()))) + " (shadow)") except: this_shadow_list.append("**N/A**") this_html_df = pd.DataFrame( list(zip(this_head, this_self_list, this_shadow_list))).T this_html_df.columns = this_html_df.iloc[0] this_html_df = this_html_df.iloc[1:].rename_axis(None, axis=1) # this_html_df.set_index("Team",drop=True,inplace=True) print(this_html_df.to_html(), file=out) print("![](../../." + c.d['charts'] + "flesch_self.png)\n", file=out) print("![](../../." + c.d['charts'] + "flesch_shadow.png)\n", file=out) print( "\n*Top: Histogram of Flesch-Kincaid readability for self reviews.*", file=out) print( "*Bottom: Histogram of Flesch-Kincaid readability for shadow reviews.*\n\n", file=out) role_list = ["self", "shadow"] print("# Analytics generated from your comments", file=out) print("\n*" + cfg['analytics']['nlp_source_comment'] + "*\n", file=out) # using enumerate to access list indices for name and title # work through the defined nlp endpoints for num, endpoint in enumerate(cfg['aylien']['endpoints'], start=0): name = (cfg['aylien']['endpoint_name'][num]) title = (cfg['aylien']['endpoint_title'][num]) print("<article id=\"columns\">", file=out) print("\n## Comment " + title + "\n\n", file=out) if endpoint == "sentiment": print("<section>", file=out) # loop through the analysis for each comment for role in role_list: # load the nlp json response to read from with open(c.d['nlp'] + this_user + "_comment_" + role + ".json") as json_file: this_nlp = json.load(json_file) # print a header to out print("\n**" + title + " for " + role + " comments**" "\n\n", file=out) if endpoint == "sentiment": item_out = "" for item in this_nlp[name]: item_out += item print("* " + item_out, file=out) else: try: item_check = [] item_out = "" for item in this_nlp[name]: # replace hashes so that they are not interpreted in markdown if endpoint != 'entities': item_out = item.replace( "#", "\\#") print("* " + item_out, file=out) else: this_item = item.split(' ') item_out = this_item[ 0].replace("#", "\\#") if item_out not in item_check: # print to out each item in a list print("* " + item_out, file=out) item_check.append(item_out) except: # if there's nothing there, print N/A print("* N/A", file=out) if endpoint == "sentiment": print("</section>", file=out) print("</article>", file=out) print("\n\n# Wordclouds generated from your comments\n", file=out) # loop through the analysis for each comment for role in role_list: print("**Your " + role + " review**\n\n", file=out) print("![](../../." + c.d['wordcloud'] + this_user + "_" + role + ".png)\n", file=out) print( "\n*Above: Wordcloud generated from feedback you gave in " + role + " reviews.*\n", file=out) print("\n\n# Record of submissions", file=out) if this_self_df.empty: print("* No review submitted", file=out) else: for i, row in this_self_df.iterrows(): print("**Your review of " + str(row['crit_text']) + " for " + self_team + "**\n\n", file=out) print(str(row['crit_comment']) + "\n\n", file=out) if this_shadow_df.empty: print("* No review submitted", file=out) else: for i, row in this_shadow_df.iterrows(): print("**Your review of " + str(row['crit_text']) + " for " + shadow_team + "**\n\n", file=out) print(str(row['crit_comment']) + "\n\n", file=out) except: with open(c.d["md"] + str(this_user) + '.md', 'w') as out: print("## " + this_user + " - " + this_first + " " + this_last + "\n\n", file=out) print("**Error in review compilation.**\n\n", file=out) # create the weasyprint variables with open(c.d['yaml'] + str(this_user) + '.yaml', 'w') as out: f.pandoc_yaml(out, str(this_user)) # create the weasyprint stylesheet with open(c.d['css'] + str(this_user) + ".css", 'w') as out: f.pandoc_css(out, str(this_user), 'anon') # turn the pandoc md to html to pdf f.pandoc_html_single(str(this_user)) f.pandoc_pdf(str(this_user)) # loop through each row and create a secret for each student for i, row in students.iterrows(): this_user = row['user'] secret = hashlib.sha1(row['user'].encode('utf-8')).hexdigest() secret_file = this_user + "-" + secret + ".pdf" comment = "<a href=\"" + cfg['assignment'][ 'feedback_url'] + "reviews/" + this_user + "-" + secret + ".pdf\">PDF Feedback on your Reviews</a>" # update the df students.loc[i, 'secret'] = comment # cp pdf to secret here file_from = c.d['pdf'] + this_user + ".pdf" file_to = c.d['review'] + secret_file copyfile(file_from, file_to) this_self_df = self_df[self_df['username'].str.contains(this_user)] this_shadow_df = shadow_df[shadow_df['username'].str.contains( this_user)] self_wc_score = this_self_df['wc_score'].sum() shadow_wc_score = this_shadow_df['wc_score'].sum() self_wps_score = this_self_df['wps_score'].sum() shadow_wps_score = this_shadow_df['wps_score'].sum() self_flesch_score = this_self_df['flesch_score'].sum() shadow_flesch_score = this_shadow_df['flesch_score'].sum() self_crit_score = this_self_df['crit_val_score'].sum() shadow_crit_score = this_shadow_df['crit_val_score'].sum() this_text_score = self_wc_score + shadow_wc_score + self_wps_score + shadow_wps_score + self_flesch_score + shadow_flesch_score this_crit_score = self_crit_score + shadow_crit_score students.loc[i, 'text_score'] = this_text_score students.loc[i, 'crit_score'] = this_crit_score students['text_rank'] = students.text_score.rank(pct=True) students['crit_rank'] = students.crit_score.rank(pct=True) for i, row in students.iterrows(): this_text_rank = row['text_rank'] this_crit_rank = row['crit_rank'] this_combined_rank = this_text_rank + this_crit_rank students.loc[i, 'combined_rank'] = this_combined_rank students['score_rank'] = students.combined_rank.rank(pct=True) this_out = students[[ 'user', 'secret', 'text_score', 'crit_score', 'score_rank' ]] this_out.to_csv(c.f['wattle_analysis'], index=False)
def wattle_csv_many_eyes(): cfg = f.load_config() f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) f.pnt_info(c.msg["console_wattle"]) f.load_tsv('data_tutor') teams = f.load_tsv('students') teams.drop_duplicates(subset=['group'], keep='first', inplace=True) for i, row in teams.iterrows(): this_team = row['group'] # cp pdf to secret here file_from = c.d['pdf'] + this_team + "_" + cfg['assignment'][ 'assignment_short'] + "_audit_anon.pdf" file_to = c.d['upload'] + this_team + "_" + cfg['assignment'][ 'assignment_short'] + ".pdf" copyfile(file_from, file_to) f.load_tsv('students') students = f.filter_row('students', 'role', 'Student') user_list = [] comment_list = [] for i, row in students.iterrows(): user = row['user'] role = row['role'] project_team = row['group'] team_row = f.filter_row('data_tutor', 'team', project_team) if not team_row.empty: team_performance = team_row.iloc[0]['suggestedindicator'] else: team_performance = "TBA" if role != 'student': project_team = row['group'] shadow_team = row['shadowteam'] comment = "Your Team's Progress Indicator:" comment += "<ul><li><strong>" + team_performance + "</strong></li></ul>" comment += "Feedback for Your Teams:" comment += "<ul><li><a href=\"" + cfg['assignment'][ 'feedback_url'] + "/" + str( project_team ) + "_" + cfg['assignment'][ 'assignment_short'] + ".pdf\">PDF Feedback for your team: " + str( project_team) + "</a></li>" comment += "<li><a href=\"" + cfg['assignment'][ 'feedback_url'] + "/" + str( shadow_team ) + "_" + cfg['assignment'][ 'assignment_short'] + ".pdf\">PDF Feedback for shadow team: " + str( shadow_team) + "</a></li></ul>" user_list.append(user) comment_list.append(comment) f.pnt_info(c.msg['console_upload']) this_out = pd.DataFrame() this_out['users'] = user_list this_out['feedback'] = comment_list this_out.to_csv(c.f['wattle'], index=False) f.pnt_notice(c.msg['console_complete'], os.path.basename(__file__))
def analysis_marks(): cfg = f.load_config() f.pnt_notice(c.msg['console_start'], os.path.basename(__file__)) f.pnt_info(c.msg["console_loading"]) marks_df = f.load_tsv('marks') crit_levels = f.load_tsv('crit_levels') # create a df of just the crit and the comments crit = f.filter_row('fields', 'field', 'crit_') comm = f.filter_row('fields', 'field', 'comment_') crit_list = f.create_list(crit, 'field') comment_list = f.create_list(comm, 'field') f.pnt_info(c.msg["console_creating_feedback_files"]) # clean up marks df c.df['marks'].loc[c.df['marks'].grade_final == 0, ['marker_name', 'marker_id']] = 'No_Submission', 'nil' for comment in comment_list: c.df['marks'][comment + "_txt"] = c.df['marks'][comment].apply(f.html_to_text) f.pnt_console("Processing the marks file") for i, row in c.df['marks'].iterrows(): for comment in comment_list: for readability_list in cfg['analytics']['readability_stats']: f.readability_stats('marks', row, i, comment + '_txt', comment + "_" + readability_list[0], readability_list[1], readability_list[2]) c.df['marks']['grade_final_pct'] = ( c.df['marks']['grade_final'] / int(cfg['assignment']['grade_final_out_of']) * 100 ) c.df['marks']['diff_final_sugg'] = (c.df['marks']['grade_final_pct'] - c.df['marks']['grade_suggested']).round(decimals=1) c.df['marks']['diff_calc_sugg'] = (c.df['marks']['grade_calculated'] - c.df['marks']['grade_suggested']).round(decimals=1) print(c.df['marks']['grade_final']) f.make_hist_chart(c.df['marks'], 'grade_final_pct') f.make_boxplot_chart(c.df['marks'], 'grade_final_pct') # generate a dataframe with the readability stats for each marker # then replace any nil submissions with 'no submission' marker = c.df['marks']['grade_final'].groupby([c.df['marks']['marker_name']]).mean().reset_index() marker = marker[marker.marker_name != 'No_Submission'] # create a marker_list for iteration marker_list = f.create_list(marker, 'marker_name') f.pnt_info("Building crit graphs...") # work through each criterion for criterion in crit_list: # print to tho console print(criterion) this_crit_df = crit_levels['index'] for i, row in marker.iterrows(): this_marker_name = row['marker_name'] this_marker_df = f.filter_row('marks', 'marker_name', this_marker_name) this_marker_stats = f.make_crit_list(crit, this_marker_df) this_col_sum = this_marker_stats[criterion].sum() this_marker_stats[this_marker_name] = this_marker_stats[criterion].apply(lambda x: x/this_col_sum*100) this_crit_df = pd.merge(this_crit_df, this_marker_stats[this_marker_name], on='index') print(this_crit_df) f.make_stacked_chart(this_crit_df, criterion, True) bin_values = [-10, -5.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 5.5, 10] bin_labels = [-10, -5, -2, -1, 0, 1, 2, 5, 10] calc_sugg_df = pd.DataFrame(bin_labels,columns=['bin']) final_sugg_df = pd.DataFrame(bin_labels,columns=['bin']) c.df['marks']['bin_calc_sugg'] = pd.cut(c.df['marks']['diff_calc_sugg'], bins=bin_values, labels=bin_labels) c.df['marks']['bin_final_sugg'] = pd.cut(c.df['marks']['diff_final_sugg'], bins=bin_values, labels=bin_labels) for i, row in marker.iterrows(): this_marker_name = row['marker_name'] this_marker_df = f.filter_row('marks', 'marker_name', this_marker_name) this_marker_calc_df = pd.DataFrame(this_marker_df.bin_calc_sugg.value_counts()).reset_index() this_marker_calc_df = this_marker_calc_df.rename(columns={'index': 'bin'}) this_col_sum = this_marker_calc_df['bin_calc_sugg'].sum() this_marker_calc_df[this_marker_name] = this_marker_calc_df['bin_calc_sugg'].apply(lambda x: x/this_col_sum*100) this_marker_calc_df = this_marker_calc_df.drop(['bin_calc_sugg'], axis=1) diff_calc_sugg_df = pd.merge(calc_sugg_df, this_marker_calc_df, on='bin') calc_sugg_df = diff_calc_sugg_df.set_index("bin") calc_sugg_df.reset_index(inplace=True) calc_sugg_df = calc_sugg_df.rename(columns={'bin': 'index'}) print(calc_sugg_df) f.make_stacked_chart(calc_sugg_df, 'suggested', False) f.pnt_info("Analysing each marker...") for i, row in marker.iterrows(): this_marker_name = row['marker_name'] print(this_marker_name) this_group_df=f.filter_row('marks', 'marker_name', row['marker_name']) marker.at[i, 'grade_count'] = this_group_df['grade_final'].count() marker.at[i, 'grade_mean'] = this_group_df['grade_final'].mean() marker.at[i, 'grade_min'] = this_group_df['grade_final'].min() marker.at[i, 'grade_max'] = this_group_df['grade_final'].max() marker.at[i, 'grade_std'] = this_group_df['grade_final'].std() marker.at[i, 'grade_skew'] = this_group_df['grade_final'].skew() # generate the readability stats for comment in comment_list: for readability_list in cfg['analytics']['readability_stats']: marker.at[i, comment + "_" + readability_list[0]] = this_group_df[comment + "_" + readability_list[0]].mean() # get the comment to pass to the nlp this_comment = " ".join(f.create_list(this_group_df, comment + "_txt")) # store the comment so that it can be accessed for the word cloud with open(c.d['txt'] + this_marker_name + "_" + comment + ".txt", 'w') as out: print(this_comment, file=out) this_nlp_file = Path(c.d['nlp'] + this_marker_name + "_" + comment + ".json") # check if the nlp data already exists # this is important only to reduce the numbers of calls on the api for local testing if not this_nlp_file.is_file(): # get the results from the api this_nlp = f.text_analysis_api(this_comment, 'comment', row['marker_name']) with open(this_nlp_file, 'w') as out: print(this_nlp, file=out) # create a wordcloud using the wordcloud_cli interface subprocess.call("wordcloud_cli --width 1000 --height 250 --text " + c.d['txt'] + this_marker_name + "_" + comment + ".txt --imagefile " + c.d['wordcloud'] + this_marker_name + "_" + comment + ".png --fontfile ./includes/fonts/Roboto-Medium.ttf --background white --color blue", shell=True) # open a file to write to for each marker # this will be joined to the end of the analysis with open(c.d['md'] + this_marker_name + '.md', 'w') as out: print("\n\n## Analysis of " + this_marker_name + "'s Feedback\n\n", file=out) # loop through the analysis for each comment for i, row in comm.iterrows(): comment = row['field'] field_text = row['label'] print("\n\n## Wordcloud for " + field_text + "\n\n", file=out) print("![](../../." + c.d['wordcloud'] + this_marker_name + "_" + comment + ".png) \n\n", file=out) # using enumerate to access list indices for name and title # work through the defined nlp endpoints for num, endpoint in enumerate(cfg['aylien']['endpoints'], start=0): name = (cfg['aylien']['endpoint_name'][num]) title = (cfg['aylien']['endpoint_title'][num]) # treat sentiment differently, as it is better presented in a table if endpoint != 'sentiment': with open(c.d['md'] + this_marker_name + '.md', 'a') as out: print("\n### Comment " + title + "\n\n", file=out) print("\n*" + cfg['analytics']['nlp_source_comment']+ "*\n", file=out) # loop through the analysis for each comment for i, row in comm.iterrows(): comment = row['field'] field_text = row['label'] # load the nlp json response to read from with open(c.d['nlp'] + this_marker_name + "_" + comment + ".json") as json_file: this_nlp = json.load(json_file) # print a header to out print("\n**" + title + " for " + field_text + "**" "\n\n", file=out) try: item_out = "" for item in this_nlp[name]: item_out = item.replace("#", "\\#") print("* " + item_out, file=out) except: print("* N/A", file=out) # create a stat_chart for the marker means f.make_stat_chart(marker, 'marker_name', 'grade_mean', 'grade_mean') # work through the readability stats to create a chart for readability_list in cfg['analytics']['readability_stats']: columns_old = ['marker_name'] columns_new = ['marker_name'] for i, row in comm.iterrows(): field = row['field'] text = row['label'] columns_old.append(field + "_" + readability_list[0]) columns_new.append(text) this_marker = marker[columns_old].copy() this_marker.columns = columns_new f.make_stat_chart(this_marker, 'marker_name', columns_new, readability_list[0]) # start by creating a file to compile everything into with open(c.d['md'] + cfg['analytics']['filename'] + ".md", 'w') as out: print("## " + cfg['analytics']['analytics_header'] + "\n\n", file=out) print("### " + cfg['analytics']['grade_table_header'] + "\n\n", file=out) print("*" + cfg['analytics']['grade_table_comment'] + "*\n\n", file=out) # create a summary table for display overall_grade_count = c.df['marks']['grade_final'].replace(0, np.NaN).count().round(1) overall_grade_mean = c.df['marks']['grade_final'].replace(0, np.NaN).mean().round(1) overall_grade_min = c.df['marks']['grade_final'].replace(0, np.NaN).min().round(1) overall_grade_max = c.df['marks']['grade_final'].replace(0, np.NaN).max().round(1) overall_grade_std = c.df['marks']['grade_final'].replace(0, np.NaN).std().round(1) overall_grade_skew = c.df['marks']['grade_final'].replace(0, np.NaN).skew().round(1) marker_html = marker[ ['marker_name', 'grade_count', 'grade_final', 'grade_std', 'grade_min', 'grade_max', 'grade_skew']].round(1) overall_row = ["Overall", overall_grade_count, overall_grade_mean, overall_grade_std, overall_grade_min, overall_grade_max, overall_grade_skew] marker_html.loc[-1] = overall_row last_row = len(marker_html.index) no_submission_count = len(c.df['marks'][c.df['marks']['grade_final'] == 0]) no_submission_row = ["No_Submission", no_submission_count, 'NA', 'NA', 'NA', 'NA', 'NA'] marker_html.loc[last_row] = no_submission_row # adding a row marker_html = marker_html.sort_index() # sorting by index marker_html.columns = ['Marker', 'Count', 'Mean', 'StDev', 'Min', 'Max', 'Skew'] marker_html.set_index('Marker', inplace=True) print(marker_html.to_html(), file=out) print("## Boxplot of final grades \n\n", file=out) print("![](../../." + c.d['charts'] + "grade_final_pct_boxplot.png)\n\n", file=out) print("## Histogram of final grades \n\n", file=out) print("![](../../." + c.d['charts'] + "grade_final_pct.png)\n\n", file=out) print("<div class=\"no-break\">\n\n", file=out) print("## Difference between suggested and calculated grade \n\n", file=out) print("*This highlights the tendancy of markers to drift from the suggested mark provided in the Database*\n\n", file=out) print("![](../../." + c.d['charts'] + "count_suggested.png)\n\n", file=out) print("</div>\n\n", file=out) print("# " + cfg['analytics']['rubric_header'] + "\n\n", file=out) for loop_row in crit.itertuples(): print("<div class=\"no-break\">\n\n", file=out) criterion = loop_row.field f.print_results_header(loop_row, out) print('*' + cfg['analytics']['rubric_comment']+ '*\n\n', file=out) print("![](../../." + c.d['charts'] + "count_" + criterion + ".png)\n\n", file=out) print("</div>\n\n", file=out) print("## " + cfg['analytics']['readability_header'] + "\n\n", file=out) for readability_list in cfg['analytics']['readability_stats']: print("<div class=\"no-break\">\n\n", file=out) print("\n\n### " + cfg['crit_chart'][readability_list[0]], file=out) print("![](../../." + c.d['charts'] + readability_list[0] + ".png)\n\n", file=out) print("*" + cfg['crit_chart'][readability_list[0]] + cfg['analytics']['readability_comment'] + "*\n\n", file=out) print("</div>\n\n", file=out) print("\n\n## " + cfg['analytics']['sentiment_header'] + "\n\n", file=out) sentiment_df = f.sentiment_table(comm, marker) sentiment_df.set_index('Name', inplace=True) print(sentiment_df.to_html(), file=out) print("# " + cfg['analytics']['summary_header']+ "\n\n", file=out) # combine the individual marker files with open(c.d['md'] + cfg['analytics']['filename'] + '.md', 'a') as out_file: for i, row in marker.iterrows(): this_marker_name = row['marker_name'] print(this_marker_name) with open(c.d['md'] + this_marker_name + '.md') as in_file: out_file.write(in_file.read()) with open(c.d['md'] + cfg['analytics']['filename'] + '.md', 'a') as out: print("\n\n\n\n*** **END OF ANALYSIS** ***\n\n", file=out) with open(c.d['yaml'] + cfg['analytics']['filename'] + '.yaml', 'w') as out: f.pandoc_yaml(out, cfg['analytics']['filename']) with open(c.d['css'] + cfg['analytics']['filename'] + ".css", 'w') as out: f.pandoc_css(out, cfg['analytics']['filename'], 'anon') f.pandoc_html_single(cfg['analytics']['filename']) f.pandoc_pdf(cfg['analytics']['filename']) f.pnt_notice(c.msg['console_complete'], os.path.basename(__file__))