def check(arg): #plik wejsciowy infile = open(arg[1], "r") char = infile.read().split(' ') infile.close() #obliczanie minimum if int(char[1]) == 0: result = fn.find(int(char[0]), fn.happycat) else: result = fn.find(int(char[0]), fn.griewank) #plik wyjsciowy outfile = open(arg[2], "w") outfile.write(' '.join(str(r) for r in result)) outfile.close()
def init(): tab = [ "-h", "--help", "-dir", "-er", "--encrypt", "-e", "decrypt", "-d", "--replace", "-r" ] if sys.argv[1] == "-h" or sys.argv[1] == "--help": functions.display_help() exit(0) if len(sys.argv) < 2: print("\033[1;31;40mBlad! Brak argumentow!") exit(1) if sys.argv[1] == "-dir": functions.find() exit(0) if (sys.argv[1] == "-c"): if len(sys.argv[1]) < 2: print("\033[1;31;40mZbyt mala ilosc argumentow!") exit(1) else: if (len(sys.argv) > 3): print("\033[1;31;40mBledne argumenty!") exit(1) else: functions.find_in_current_directory(sys.argv[2]) exit(0) if sys.argv[1] == "--encrypt" or sys.argv[1] == "-e" or sys.argv[ 1] == "-er": functions.encrypt(sys.argv[1], sys.argv[2]) exit(0) if sys.argv[1] == "--decrypt" or sys.argv[1] == "-d": functions.decrypt(sys.argv[2]) exit(0) if sys.argv[1] == "--replace" or sys.argv[1] == "-r": functions.replace(sys.argv[2], sys.argv[3], sys.argv[4]) exit(0) if sys.argv[1] == "-s": functions.file_statistics(sys.argv[2]) exit(0) if sys.argv[1] not in tab: print("\033[1;31;40mBledne argumenty!") exit(1)
def test_find(): test_list = ( "info hello, world", "info hello, world", " info hello, world", "info\thello, world", "info", "info ", "info ", "info \tfoo", ) for test in test_list: fn = functions.find(test)
async def echo_message(message: types.Message): if message.text: db.add_message(user_id=message.from_user.id, text=message.text, time=message.date, name=message.chat.first_name) try: movies, length, titles = functions.find(message.text) if length > 0: if length > 5: k = 5 else: k = length for i in range(k): movie = movies.iloc[i] msg = text(bold(movie.title), f'Описание: {movie.description}...', f'Год: {movie.year}', f'Страна: {movie.country}', f'Жанр: {movie.genre}', f'Время: {movie.runtime} минуты', f'Режисер: {movie.film_director}', f'Актеры: {movie.cast}', sep='\n') await bot.send_photo(chat_id=message.from_user.id, photo=movie.img_url, parse_mode=ParseMode.MARKDOWN, caption=msg) if length > 5: if length > 50: length = 50 await bot.send_message(message.from_user.id, bold('Я также нашел по вашему запросу:'), parse_mode=ParseMode.MARKDOWN) for i in range(5, length): await bot.send_message(message.from_user.id, titles.iloc[i]) if length == 0: await bot.send_message( message.from_user.id, 'К сожалению, я ничего не нашел по вашему запросу. Проверьте правильность написания 😌😌😌' ) except: await bot.send_message( message.from_user.id, 'К сожалению, я ничего не нашел по вашему запросу. Проверьте правильность написания 😌😌😌' )
if coords[0][i][4]-coords[0][i][2]>0 and coords[0][i][3]-coords[0][i][1]>0: imin=max(coords[0][i][2]-10,0) imax=min(coords[0][i][4]+10,Nx) jmin=max(coords[0][i][1]-10,0) jmax=min(coords[0][i][3]+10,Ny) cos=SbFun.isCosmicRay(data[jmin:jmax,imin:imax],100,50) if cos[0]==False: imin=max(coords[0][i][2]-5,0) imax=min(coords[0][i][4]+5,Nx) jmin=max(coords[0][i][1]-5,0) jmax=min(coords[0][i][3]+5,Ny) I=np.sum(data[jmin:jmax,imin:imax]-background_mean) r=SbFun.find(data,imin,imax,jmin,jmax,background_mean,background_std,I) if r[0]!=-1.0 and r[1]<5.0 and r[3]<5.0: model=np.zeros((jmax-jmin,imax-imin)) g=SbFun.Goodness2(data,jmin,jmax,imin,imax,r[0],r[2],r[4],r[6],r[8],r[10],background_mean,background_std) np.append(r,g) if g<0.1: np.append(r,g) #Cat.append(r) stars+=1 ##asignar coordenadas
norm_data_js_exl.loc[norm_data_js_exl['Ulica'] == 'nan'] = None norm_data_js_exl.loc[norm_data_js_exl['Nr domu'] == 'nan'] = None norm_data_js_exl.loc[norm_data_js_exl['Kod poczt.'] == 'nan'] = None norm_data_js_exl['ID'] = norm_data_js_exl['ID'].fillna(0.0).astype(float) norm_data_js_exl['ID'] = norm_data_js_exl['ID'].astype(int) norm_data_js_exl['PATRON'] = js_exl["PATRON"] # utworznie slownika z miastami, wywolanie funkcji dopasowujacej # of_exl = of_exl.drop(columns=['Patron']) print('Rozpoczęcie dopasowywania ... ') of_exl['Miejscowość'] = of_exl['Miejscowość'].apply(fun.dash_out) of_exl = of_exl.reset_index(drop=True) of_exl = of_exl.sort_values(by='Miejscowość') dict_of_names = fun.dictionary_of_cities(of_exl) of_exl = of_exl.sort_values(by='Miejscowość') norm_data_loc_of_school, norm_data_prop, status_tab, norm_data_of_school_org = fun.find(min, max, norm_data_js_exl, of_exl, dict_of_names) print('Dopasoswyanie zakończone') print('Tworzenie pliku wynikowego ...') # utworzenie excela zawierajacego dane wejsiowe z jsosa i dopasowania final_data = {'ID kandydata': js_exl.iloc[min:max, 0], 'Miejscowość szkoły (wprowadzona)': js_exl.iloc[min:max, 2], 'Miejscowość szkoły (znormalizowana)': norm_data_loc_of_school, 'Zgodność danych (%)': norm_data_prop, 'Status': status_tab, 'Nazwa szkoły (niezmieniona)': js_kopia.iloc[min:max, 1], 'Nazwa szkoły z bazy danych (niezmieniona)': norm_data_of_school_org} norm_data_final = pd.DataFrame(data=final_data) while True: try: norm_data_final.to_excel('plik_wynikowy.xlsx') break
def main(unused_argv): data_path = FLAGS.rawDir p_num = 1 incomplete = [] if FLAGS.pointArray: patient_sets = find('*.mat', data_path) patient_sets.sort() for patient in patient_sets: data = sio.loadmat(patient) data_lens = sio.loadmat( patient.replace('\\data\\', '\\Lens_label\\').replace( '.mat', '_Lens_label.mat')) vect_lens = data_lens['vect'] vect = data['vect'] scan = vect['img'][0, 0] mask = vect['label'][0, 0] mask_lens = vect_lens['lens_label'][0, 0] ## Needed if passing through CERR scan_rot = scan.transpose(2, 1, 0) mask_rot = mask.transpose(2, 1, 0) mask_lens_rot = mask_lens.transpose(2, 1, 0) unique, counts = np.unique(mask_lens_rot, return_counts=True) vals = dict(zip(unique, counts)) print(patient) print(vals) unique, counts = np.unique(mask_rot, return_counts=True) vals = dict(zip(unique, counts)) print(vals) # parotids np.place(mask_rot, mask_rot == 2, 2) # submands np.place(mask_rot, mask_rot == 3, 3) np.place(mask_rot, mask_rot == 4, 4) # bps np.place(mask_rot, mask_rot == 5, 5) np.place(mask_rot, mask_rot == 6, 6) # mandible np.place(mask_rot, mask_rot == 7, 7) # cord np.place(mask_rot, mask_rot == 8, 8) # brainstem np.place(mask_rot, mask_rot == 9, 9) # OC np.place(mask_rot, mask_rot == 10, 10) # larynx np.place(mask_rot, mask_rot == 11, 11) # chiasm np.place(mask_rot, mask_rot == 12, 12) # optics np.place(mask_rot, mask_rot == 13, 13) np.place(mask_rot, mask_rot == 14, 14) # eyes np.place(mask_rot, mask_rot == 15, 15) np.place(mask_rot, mask_rot == 16, 16) # lenses np.place(mask_lens_rot, mask_lens_rot == 17, 100) np.place(mask_lens_rot, mask_lens_rot == 18, 100) np.place(mask_rot, mask_rot == 19, 19) mask_rot = mask_lens_rot + mask_rot # # np.place(mask_rot, mask_rot > 13, 12) np.place(mask_rot, mask_rot == 115, 17) np.place(mask_rot, mask_rot == 116, 18) np.place(mask_rot, mask_rot == 117, 17) np.place(mask_rot, mask_rot == 118, 18) unique, counts = np.unique(mask_rot, return_counts=True) print(unique) if len(unique) >= 19: data_export_MR_3D(scan_rot, mask_rot, FLAGS.saveDir, p_num, FLAGS.datasetName) print(p_num) p_num = p_num + 1 else: incomplete.append(p_num) create_tfrecord(os.path.join(FLAGS.saveDir, FLAGS.datasetName)) with open('incomplete.pickle', 'wb') as f: pickle.dump(incomplete, f) elif FLAGS.MHD: patient_sets = find('*segmentation.mhd', data_path) patient_sets.sort() for patient in patient_sets: s = sitk.ReadImage(patient.replace('_segmentation', '')) m = sitk.ReadImage(patient) # scan, mask should be up shape: (scan length, height, width) scan = sitk.GetArrayFromImage(s) mask = sitk.GetArrayFromImage(m) unique, counts = np.unique(mask, return_counts=True) print('Saving patient dataset: ' + patient) data_export_MR_3D(scan, mask, FLAGS.saveDir, p_num, FLAGS.datasetName) p_num = p_num + 1 create_tfrecord(os.path.join(FLAGS.saveDir, FLAGS.datasetName)) else: patient_sets = find('mask_total*', data_path) patient_sets.sort() patient_sets = [] for patient in patient_sets: print(patient) s = h5py.File(patient.replace('mask_total', 'scan'), 'r') m = h5py.File(patient, 'r') scan = s['scan'][:] mask = m['mask_total'][:] unique, counts = np.unique(mask, return_counts=True) print(unique) if (len(unique) >= 1) and (p_num >= 0): data_export_MR_3D(scan, mask, FLAGS.saveDir, p_num, FLAGS.datasetName, 7) print(p_num) p_num = p_num + 1 else: incomplete.append(p_num) p_num = p_num + 1 create_tfrecord(os.path.join(FLAGS.saveDir, FLAGS.datasetName))
def create_tfrecord(structure_path): planeList = ['ax', 'cor', 'sag'] planeDir = ['Axial', 'Coronal', 'Sag'] filename_train = 'train_' filename_val = 'val_' i = 0 for plane in planeList: file_base = os.path.join(structure_path, 'processed', 'ImageSets', planeDir[i]) if not os.path.exists(file_base): os.makedirs(file_base) f = open(os.path.join(file_base, filename_train + plane + '.txt'), 'a') f.truncate() k = 0 path = os.path.join(structure_path, 'processed', 'PNGImages') pattern = plane + '*.png' files = find(pattern, path) for file in files: if file.find(plane) > 0 \ and (file.find(plane + '1011_') < 1 and file.find(plane + '1511_') < 1 and file.find(plane + '2011_') < 1 and file.find(plane + '2511_') < 1 and file.find(plane + '3011_') < 1 and file.find(plane + '3511_') < 1 and file.find(plane + '4011_') < 1 and file.find(plane + '4511_') < 1 and file.find(plane + '511_') < 1): h = file.split(os.sep) f.write(h[-1].replace('.png', '') + '\n') k = k + 1 f.close() print(filename_train + plane, k) if not os.path.exists(file_base): os.makedirs(file_base) f = open(os.path.join(file_base, filename_val + plane + '.txt'), 'a') f.truncate() k = 0 for file in files: if file.find(plane) > 0 \ and (file.find(plane + '511_') > 0 or file.find(plane + '1011_') > 0 or file.find(plane + '1511_') > 0 or file.find(plane + '2011_') > 0 or file.find(plane + '2511_') > 0 or file.find(plane + '3011_') > 0 or file.find(plane + '3511_') > 0 or file.find(plane + '4011_') > 0 or file.find(plane + '4511_') > 0): h = file.split(os.sep) f.write(h[-1].replace('.png', '') + '\n') k = k + 1 f.close() print(filename_val + plane, k) i = i + 1 dataset_splits = glob.glob(os.path.join(file_base, '*.txt')) for dataset_split in dataset_splits: _convert_dataset(dataset_split, FLAGS.numShards, structure_path, plane) return
db = pd.read_excel(contourDatabase, index=False) for column in columns: if column not in db: db[column] = "" else: db[column] = db[column].astype('str') for directory in dirList[1:]: # if directory is CT, store scanData matrix structureSets = [] dataset_ct = None if 'CT' in directory.split(os.sep)[-1][0:2] or 'MR' in directory.split( os.sep)[-1][0:2] or 'SQ' in directory.split(os.sep)[-1][0:2]: dcmFiles = find('*.dcm', directory) if dcmFiles: arrayTuple = [] for dcmFile in dcmFiles: dataset = pydicom.dcmread(dcmFile) filename = dataset.StudyInstanceUID file = os.path.join(HDF5_DIR, filename + '.h5') if not os.path.isfile(file) or os.path.isfile(file): if dataset.Modality == 'CT' or dataset.Modality == 'MR': pixelSpacing = dataset.PixelSpacing pixelSpacing.append(dataset.SliceThickness) ImagePosition = dataset.ImagePositionPatient ImagePosition.append(1) X = dataset.ImageOrientationPatient[0:3] Y = dataset.ImageOrientationPatient[3:] coordinateSystemTransform = np.zeros((4, 4))