def test_function_1(empty_folders): in_folder, out_folder, rep_folder = empty_folders in_folder = in_folder.strpath out_folder = out_folder.strpath rep_folder = rep_folder.strpath # Ass this folders are not parameters of the function, mock them. with mock.patch('functions.OUTPUT_FOLDER', out_folder): with mock.patch('functions.REPORTS_FOLDER', rep_folder): function1()
def metBissecao(a, b): iterations = 0 while abs(a - b) > 7e-6: m = abs(a + b) / 2.0 print( str(iterations) + ". M: " + str(m) + "\t a: " + str(a) + "\t b:" + str(b)) if (f.function1(a) * f.function1(m)) < 0: b = m else: a = m iterations += 1 print("Total de iteracoes: " + str(iterations)) print("Melhor apoximacao: " + str(m)) return (str(iterations), str(m))
def test_function_1_2(empty_folders): in_folder, out_folder, rep_folder = empty_folders in_folder = in_folder.strpath out_folder = out_folder.strpath rep_folder = rep_folder.strpath # With this mock imported constant with mock.patch('functions.OUTPUT_FOLDER', out_folder): # With this, patch arguments default values # Python 2 # function2.func_defaults = (out_folder, in_folder) # Python 3 function2.__defaults__ = (out_folder, rep_folder) function1.__defaults__ = (out_folder, ) function1()
def metTangente(x): iterations = 0 old_x = 0 while abs(old_x - x) > 7e-6: old_x = x x = (x - f.function1(x) / f.derived_function1(x)) print(str(iterations) + ". M: " + str(x)) iterations += 1 print("Total de iteracoes: " + str(iterations)) print("Melhor apoximacao: " + str(x)) return (str(iterations), str(x))
def metCorda(a, b): iterations = 0 zero = (a + b) / 2 old_a = a while abs(old_a - zero) > 7e-6: old_a = a zero = (a * f.function1(b) - b * f.function1(a)) / (f.function1(b) - f.function1(a)) print( str(iterations) + ". M: " + str(zero) + "\t a: " + str(a) + "\t b:" + str(b)) if (f.function1(a) * f.function1(zero)) < 0: b = zero else: a = zero iterations += 1 print("Total de iteracoes: " + str(iterations)) print("Melhor apoximacao: " + str(zero)) return (str(iterations), str(zero))
from functions import function1, function2 function1() function2()
from __future__ import division import numpy as np from matplotlib import pyplot as plt from functions import function1, taninv, trapezoid_integrate, trapezoid_integrate_for_loop # Step 2 start = 0.0 stop = 5.0 num = 51 # to include the last element and avoid obo error vector = np.linspace(start, stop, num) # calling x vector values = function1(vector) ########## # Step 3 plt.plot(vector, values, "bo") plt.xlabel("x") plt.ylabel("$f(x)$") plt.title("""Plot of $f(x) = 1/(1+x^2) $""") plt.show() plt.close() ########### # Step 4 taninv_calculated = np.array(taninv( vector)[:, 0]) # remember that the quad function returns (integral, error) taninv_actual = np.arctan(vector) #with open("table.txt","w") as f:
viv_data = pd.read_csv(viv_file_path, usecols=['U_MPIO', 'VA1_ESTRATO', 'VB_ACU', 'VF_INTERNET']) health_providers_data = pd.read_csv(health_providers_file, usecols=['depa_nombre', 'muni_nombre','nombre_prestador']) ##################################################################################################### # Inicio del código ##################################################################################################### state_code = int(states[i][0:2]) state_name = normalize(states[i][2:].upper()) ##################################################################################################### # Se van a encontrar las variables posibles en el archivo de 'Personas' y 'Viviendas' ##################################################################################################### # s será la matriz de salida de tamaño (N°deMunicipios,26) s = function1(people_data, viv_data) ####################################################################################### # Ahora se va a calcular el numero de hospitales por km2 y el numero de hogares por km2 ####################################################################################### s[:,24:26] = function2(state_code, state_name, municipality_data, health_providers_data, municipality_area_data, houses_data) # Redondeamos todos los resultados a dos decimales y se escriben como porcentaje, menos las ultimas dos filas s[:,1:-8] = np.round(s[:,1:-8]*100,2) s[:,-8:] = np.round(s[:,-8:],6) # Se ajustan los codigos de cada municipio para el merge final s[:,0] = s[:,0] + state_code*1000 ##################################################################################################### # Merging with the main file #####################################################################################################
def test_three_items(self): input = [1, 9, 9, 10, 10, 10, 10, 11] output = [-7.75, .25, .25, 1.25, 1.25, 1.25, 1.25, 2.25] self.assertEquals(output, function1(input))
def test_two_items(self): self.assertEquals([-.5, .5], function1([0, 1])) self.assertEquals([-2.5, 2.5], function1([3, 8]))
def test_one_item(self): self.assertEquals([0], function1([0])) self.assertEquals([0], function1([9])) self.assertEquals([0], function1([-10]))
def test_blank_list(self): self.assertEquals([], function1([]))
def evaluate(self, agent): self.fitness = fun.function1(self.x, agent)