def axiom_achievers(axiom_instances, state): axioms_from_pre = defaultdict(list) for ax in axiom_instances: for p in ax.preconditions: assert isinstance(p, Atom) axioms_from_pre[p].append(ax) axiom_from_eff = {} queue = deque() for head, val in state.items(): if not isinstance(head.function, Predicate) or (val != True): continue eval = initialize(head, val) if isinstance(eval, Atom) and (eval not in axiom_from_eff): axiom_from_eff[eval] = None queue.append(eval) while queue: pre = queue.popleft() for ax in axioms_from_pre[pre]: if (ax.effect not in axiom_from_eff) and all( p in axiom_from_eff for p in ax.preconditions): axiom_from_eff[ax.effect] = ax queue.append(ax.effect) return axiom_from_eff
def test_start_up(self): """ Testing game startup by checking if the username has be sucessfully entered and the game has been started """ username = "******" question_list = functions.initialize(username) self.assertEqual(question_list['username'], username)
def evals_from_state(state): return {initialize(*item) for item in state.items()}
#03/10/17 - Tim - Added integration with functions.py. Now can read temp., pressure, Volt, and Curr #03/13/17 - Tim - Plots pressure and creates text files. Added headers to Volt and Press #05/11/17 - Tim - Changed plots to reflect new temp sensors, fixed print to file for temps, set alarm to 0 #TO DO RX202_lookup = np.loadtxt( 'RX-202A Mean Curve.tbl') #202 ADR sensor look up table #RX202_lookup = np.loadtxt('RX-102A Mean Curve.tbl') #102 300mK/ 1K sensors RX202_interp = interpolate.interp1d( RX202_lookup[:, 1], RX202_lookup[:, 0], fill_value=0., bounds_error=False ) # interpolates the temperature when in between lookup table values #test = np.float(RX202_interp(4000)) #RX202_temps = RX202_interp(-linear_bridge*1000) lines, colors, labels, plots = initialize() # turn on alarm on for certain values # 4K P.T--4K HTS--50K HTS--Black Body--50K P.T.--50K Plate--ADR Shield--4He Pump--3He Pump--4He Switch--3 He Switch--300 mK Shield--ADK Switch--4-1K Switch--1K Shield--3He Head--4He Head--ADR-- Alarm_on = np.array((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) Alarm_value = np.array((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) sleep_interval = 10. #seconds change back Alarm = 0 # 0 for off 1 for on now = datetime.datetime.now() date_str = str(now)[0:10] # we want the file prefix to reflect the date in which the temperature data is taken file_prefix = "C:/Users/tycho/Desktop/White_Cryo_Code/Temps/" + date_str file_suffix = '' file_prefix2 = "C:/Users/tycho/Desktop/White_Cryo_Code/Voltage_Current/" + date_str
def CAS_simulation(input_initial_values_file): # set simulation parameters functions.set_parameters() # create python objects for walkers and balls if gv.enhanced_sampling_flag == 2: walker_list = [None] * (gv.num_balls_limit * gv.num_walkers_for_sc * 2) temp_walker_list = [None] * (gv.num_balls_limit * gv.num_walkers_for_sc * 2) else: walker_list = [None] * (gv.num_balls_limit * gv.num_walkers * 2) temp_walker_list = [None] * (gv.num_balls_limit * gv.num_walkers * 2) vacant_walker_indices = [] balls = np.zeros( (1, gv.num_cvs + 3)) # ball coordinates / ball radius / ball key / # of walkers ball_to_walkers = {} key_to_ball = {} ball_clusters_list = {} # create walkers and their directories functions.initialize(input_initial_values_file, walker_list) for step_num in range(gv.max_num_steps): # reset ball objects so that balls are newly created at every step if gv.balls_flag == 0: balls = np.zeros((1, gv.num_cvs + 3)) ball_to_walkers = {} key_to_ball = {} ball_clusters_list = {} gv.current_num_balls = 0 print 'running ' + str(step_num + 1) + '-th step' # first, run simulation t0 = time() functions.m_simulation(walker_list) # second, create balls and assign walkers to balls t1 = time() if gv.enhanced_sampling_flag == 1: new_balls = functions.threshold_binning(step_num, walker_list, temp_walker_list, balls, ball_to_walkers, key_to_ball) else: new_balls = functions.binning(step_num, walker_list, temp_walker_list, balls, ball_to_walkers, key_to_ball) # third, perform spectral clustering if enhanced_sampling_flag = 2 if gv.enhanced_sampling_flag == 2 and gv.num_balls_for_sc <= gv.num_occupied_balls and gv.sc_performed == 0: functions.spectral_clustering(step_num, temp_walker_list, new_balls, ball_clusters_list) # fourth, resample walkers for every ball if gv.sc_performed == 1: functions.resampling_for_sc(walker_list, temp_walker_list, new_balls, ball_to_walkers, ball_clusters_list, vacant_walker_indices) else: functions.resampling(walker_list, temp_walker_list, new_balls, ball_to_walkers, vacant_walker_indices) else: functions.resampling(walker_list, temp_walker_list, new_balls, ball_to_walkers, vacant_walker_indices) # finally, output the results in text files functions.print_status(step_num, walker_list, new_balls, ball_to_walkers, ball_clusters_list, key_to_ball) balls = new_balls t2 = time() os.chdir(gv.main_directory + '/CAS') f = open('time_record.txt', 'a') f.write( str(step_num + 1) + '-th step: ' + 'simulation time: ' + str(t1 - t0) + ' ' + 'post-processing time: ' + str(t2 - t1) + '\n') f.close()
def CAS_simulation(input_initial_values_file): # set simulation parameters functions.set_parameters() # create python objects for walkers and balls if gv.enhanced_sampling_flag == 2: walker_list = [None]*(gv.num_balls_limit*gv.num_walkers_for_sc*2) temp_walker_list = [None]*(gv.num_balls_limit*gv.num_walkers_for_sc*2) else: walker_list = [None]*(gv.num_balls_limit*gv.num_walkers*2) temp_walker_list = [None]*(gv.num_balls_limit*gv.num_walkers*2) vacant_walker_indices = [] balls = np.zeros((1, gv.num_cvs+3)) # ball coordinates / ball radius / ball key / # of walkers ball_to_walkers = {} key_to_ball = {} ball_clusters_list = {} # create walkers and their directories new_balls = functions.initialize(input_initial_values_file, walker_list, temp_walker_list, balls, ball_to_walkers, vacant_walker_indices) balls = new_balls for step_num in range(gv.initial_step_num, gv.initial_step_num + gv.max_num_steps): # reset ball objects so that balls are newly created at every step if gv.balls_flag == 0 and step_num != gv.initial_step_num: balls = np.zeros((1, gv.num_cvs+3)) ball_to_walkers = {} key_to_ball = {} ball_clusters_list = {} gv.current_num_balls = 0 if gv.simulation_flag != 0 and step_num == gv.initial_step_num: pass else: gv.first_walker = 0 gv.last_walker = gv.total_num_walkers-1 print 'running ' + str(step_num+1) + '-th step' os.chdir(gv.main_directory) f = open('bash_script_input_file.txt', 'w') f.write(str(gv.first_walker)) f.write(' first_' + str(gv.last_walker) + '_last') f.close() # first, run simulation or clean up with bash script t0 = time() if (gv.simulation_flag == 3 or gv.simulation_flag == 4) and step_num == gv.initial_step_num: pass elif gv.simulation_flag == 2 and step_num == gv.initial_step_num: os.system('./clean_up.sh') else: os.system('./simulations.sh') # second, create balls and assign walkers to balls t1 = time() if gv.enhanced_sampling_flag == 1: new_balls = functions.threshold_binning(step_num, walker_list, temp_walker_list, balls, ball_to_walkers, key_to_ball) else: new_balls = functions.binning(step_num, walker_list, temp_walker_list, balls, ball_to_walkers, key_to_ball) # third, perform spectral clustering if enhanced_sampling_flag = 2 if gv.enhanced_sampling_flag == 2 and gv.num_balls_for_sc <= gv.num_occupied_balls \ and step_num != gv.initial_step_num and gv.sc_performed == 0: functions.spectral_clustering(step_num, temp_walker_list, new_balls, ball_clusters_list) # fourth, resample walkers for every ball if gv.sc_performed == 1: functions.resampling_for_sc(walker_list, temp_walker_list, new_balls, ball_to_walkers, ball_clusters_list, vacant_walker_indices) else: functions.resampling(walker_list, temp_walker_list, new_balls, ball_to_walkers, vacant_walker_indices) else: functions.resampling(walker_list, temp_walker_list, new_balls, ball_to_walkers, vacant_walker_indices) # finally, output the results in text files functions.print_status(step_num, walker_list, new_balls, ball_to_walkers, ball_clusters_list, key_to_ball) balls = new_balls t2 = time() os.chdir(gv.main_directory+'/CAS') f = open('time_record.txt', 'a') f.write(str(step_num+1) + '-th step: ' + 'simulation time: ' + str(t1-t0) + ' ' + 'post-processing time: ' + str(t2-t1) + '\n') f.close()
def questions(username): #Set up page title = "Question Game" description = "Welcome {0}!".format(username.capitalize()) #Find out the length of the game game_length = functions.get_file_length() #Logic for every time the check button is pressed if request.method == 'POST': form = request.form """ Starts the game with default values when you access play the game from the start game page """ if form.get('start-game') == 'true': data = functions.initialize(username) return render_template('questions.html', data=data, title=title, description=description) else: try: question_index = int(request.form.get('question_index')) score = int(request.form.get('current_score')) question = functions.get_question(question_index) # Check whether the answer is correct user_answer = request.form.get('user_answer').lower().strip() real_answer = question['english'].lower() real_question = question['spanish'].lower() correct = user_answer == real_answer """ Main Game Logic """ while question_index < game_length: #Correct Questions if correct: #increment score and question index question_index += 1 score += 1 #Displays message to my html when I get a question correct flash( 'The translation of {0} is {1}'.format( real_question, real_answer), 'success') #Load Next Question next_question = functions.get_question(question_index) #Incorrect Questions else: #Increment question index question_index += 1 #Displays message to my html when I get a question wrong flash( 'The translation of {0} is {1}. You said {2}'. format(real_question, real_answer, user_answer), 'error') #Load Next Question next_question = functions.get_question(question_index) #Setting up question information to be rendered to html if next_question is not None: data = { 'question_index': question_index, 'english': next_question['english'], 'spanish': next_question['spanish'], 'username': username, 'current_score': score, 'length': game_length } return render_template('questions.html', data=data, title=title, description=description) else: #Clears the messages session.pop('_flashes', None) #Set the score functions.set_high_score(username, score) return render_template( 'scores.html', scores=functions.get_high_score(), title="Game Over", description="{0} your score is: {1}".format( username.capitalize(), score)) #Game restart error handling except Exception as e: print("Error : {}".format(e)) # Redirect to the homepage with an error if using GET return redirect('/')
if '20190703' in gps_csv: print("Completed 20190703") continue if '20190704' in gps_csv: print("Completed 20190704") continue if '20190706' in gps_csv: print("Completed 20190706") continue print(csv_name, 'START ', str( datetime.now() )) # 1. remove old data and create necessary directories initialize() # 2. ananymize ap_id column to int value , clip points within boundary #gdf_probe_clipped, gdf_target = get_points_within_target_region (gps_csv, anonymize=True, display_plot = False) gdf_probe_clipped, gdf_target = get_points_within_target_region (gps_csv, anonymize=False, display_plot = False) #print('----2 done----') # 3. Preprocess: cleaning data & applying sampling df_sample = preprocess_data() #print('----3 done----') # 4. map matching with osm roads using graphhopper df_mapped_route = map_match_csv2gpx_multithread(df_sample) # multithreaded
send_url = 'http://freegeoip.net/json' #Application API Keys from Internet of Things Service from IBM Bluemix username = "******" password = "******" temp = username.split("-") organization = temp[1] #any string for type e.g. "JavaDevice" deviceType = "Pi" deviceId = str(hex(int(get_mac())))[2:] deviceId = 'gateway_'+deviceId[:-1] deviceCli = functions.initialize(username, password, organization, deviceType, deviceId) deviceCli.connect() #r = requests.get(send_url) #j = json.loads(r.text) #lat = j['latitude'] #lon = j['longitude'] #Manyata Tech Park IBM lat = 13.048291 lon = 77.620382 #EGL IBM #lat = 12.951432 #lon = 77.643296
import dataTypes # stub: add code to ask user for # - life table # - initial population size # - initial demographics # -model run time (in breeding cycles) lifeTable = [[0, 1, 0], [1, 0.75, 4], [2, 0.4, 5]] lifeTable_wrightFisher = [[0, 1, 1]] pop_size = 100 initialDemographics = [0.25, 0.5, 0.25] maxYears = 10 # a history of every organism that has ever lived (and then died) organismRecordList = [] # list of organism that are alive. currentlyAliveList = [] # DEBUGGING OUTPUT for ageCohort in lifeTable: print("age : ", ageCohort[0], ", survival probability : ", ageCohort[1], ", mean fertility : ", ageCohort[2]) # step 1: create generation 1. initialize(organismRecordList, currentlyAliveList, pop_size, initialDemographics) for i in currentlyAliveList: print(i)
def main(): global per initialize() input("\nPress enter to generate your population: ") print("\n") per = {x: Susceptible() for x in range(1, config.initPop + 1)} for x in per: print(str(x) + ": " + str(per[x])) for x in range(1, config.initPop + 1): globals()["per" + str(x)] = Susceptible() totalID.append(globals()["per" + str(x)].getID()) susceptID.append(globals()["per" + str(x)].getID()) for y in range(1, config.zombiePop + 1): globals()["per" + str(y)].changeStatus("Zombie") endVal = len(totalID) + 1 for x in range(1, endVal): print(str(x) + ": " + str(globals()["per" + str(x)])) input("\nPress enter to run simulation: ") print("\n") config.susceptPop = len(susceptID) runSim = True while runSim: #while config.time < 672: #print("\nTime {}".format(time)) for x in range(1, endVal): globals()["per" + str(x)].walk() if globals()["per" + str(x)].getStatus() == "Susceptible": globals()["per" + str(x)].buildDefense() if globals()["per" + str(x)].getStatus() == "Infected" or globals( )["per" + str(x)].getStatus() == "Recovered": globals()["per" + str(x)].determineFate() if globals()["per" + str(x)].getStatus() == "Removed": globals()["per" + str(x)].setCOD("Died of infection") if globals()["per" + str(x)].getStatus() == "Immune": globals()["per" + str(x)].developCure() for x in range(1, endVal): for y in range(1, endVal): if globals()["per" + str(x)] == globals()["per" + str(y)]: if globals()["per" + str(x)].getStatus() == "Zombie" and globals()[ "per" + str(y)].getStatus() == "Susceptible": globals()["per" + str(x)].bite(globals()["per" + str(y)]) if globals()["per" + str(x)].getStatus() == "Zombie" and globals()[ "per" + str(y)].getStatus() == "Immune": globals()["per" + str(x)].bite(globals()["per" + str(y)]) for x in range(1, endVal): for y in range(1, endVal): if globals()["per" + str(x)] == globals()["per" + str(y)]: if globals()["per" + str(x)].getStatus() == "Immune" and globals()[ "per" + str(y)].getStatus() == "Zombie": globals()["per" + str(x)].heal(globals()["per" + str(y)]) if globals()["per" + str(x)].getStatus() == "Immune" and globals()[ "per" + str(y)].getStatus() == "Infected": globals()["per" + str(x)].heal(globals()["per" + str(y)]) susceptList.append(len(susceptID)) zombieList.append(len(zombieID)) removeList.append(len(removeID)) infectList.append(len(infectID)) recoverList.append(len(recoverID)) immuneList.append(len(immuneID)) config.time += 1 if len(zombieID) == 0 and len(infectID) == 0: config.endScene = 1 runSim = False if len(susceptID) == 0 and len(immuneID) == 0 and len(recoverID) == 0: config.endScene = 2 runSim = False if config.time >= 1500: config.endScene = 3 runSim = False for x in range(1, endVal): print(str(x) + ": " + str(globals()["per" + str(x)])) input("\nPress enter to display graphs:") fileName = "simulation--{}-{}-{}--{}-{}-{}.pdf".format( now.year, now.month, now.day, now.hour, now.minute, now.second) pp = PdfPages(fileName) plt.plot(susceptList, label="Susceptible") plt.plot(zombieList, label="Zombie") plt.legend() plt.xlabel("Time (hours)") plt.ylabel("Number of People") pp.savefig() plt.show() plt.plot(immuneList, label="Immune") plt.plot(removeList, label="Removed") plt.legend() plt.xlabel("Time (hours)") plt.ylabel("Number of People") pp.savefig() plt.show() while True: try: summary = input( "\nWould you like to view the simulation summary? (Y/N): ") if summary not in ['N', 'n', 'Y', 'y']: raise ValueError except ValueError: print("\nPlease enter 'Y' or 'N'\n") else: break if summary in ['N', 'n']: pp.close() elif summary in ['Y', 'y'] and config.endScene == 1: end = "\n\nThe simulation lasted for {} hours. It ended because the Zombie and Infected population both reached zero.\n\ There are {} people of class Immune and {} people of class Susceptible. {} {} Recovering. \n\n".format( config.time, len(immuneID), len(susceptID), len(recoverID), config.p1 if (len(recoverID) == 1) else config.p2) print(end) elif summary in ['Y', 'y'] and config.endScene == 2: end = "\n\nThe simulation lasted for {} hours. It ended because the Susceptible, Immune, and Recovering populations all reached zero.\n\ There are {} people of class Zombie and {} people of class Infected.\n\n".format( config.time, len(zombieID), len(infectID)) print(end) elif summary in ['Y', 'y'] and config.endScene == 3: end = "\n\nThe simulation lasted for the maximum alloted time, {} hours.\n\ There are {} Susceptible's, {} Zombie's, {} Immune's, {} Recovered and {} Removed.".format( config.time, len(susceptID), len(zombieID), len(immuneID), len(recoverID), len(removeID)) print(end) firstPage = plt.figure(figsize=(11.69, 8.27)) firstPage.clf() firstPage.text(0.5, 0.5, end, transform=firstPage.transFigure, size=12, ha="center") pp.savefig() plt.close() pp.close() input("Press enter to end the simulation.")
def CAS_simulation(input_initial_values_file): # set simulation parameters. functions.set_parameters() # create python objects for walkers and macrostates. # walker_list keeps track of previous information whereas temp_walker_list keeps track of current/new information. if gv.enhanced_sampling_flag == 2: walker_list = [None]*(gv.num_balls_for_sc*gv.num_walkers*100) temp_walker_list = [None]*(gv.num_balls_for_sc*gv.num_walkers*100) else: walker_list = [None]*(gv.num_balls_limit*gv.num_walkers*2) temp_walker_list = [None]*(gv.num_balls_limit*gv.num_walkers*2) # balls is recorded in the following order: ball coordinates / ball radius / ball key / # of walkers balls = np.zeros((1, gv.num_cvs+3)) balls_array = np.zeros((1, gv.num_cvs)) # maps ball coordinates to walkers ball_to_walkers = {} # create walkers and their directories. balls, balls_array = functions.initialize(input_initial_values_file, walker_list, temp_walker_list, balls, balls_array, ball_to_walkers) for step_num in range(gv.initial_step_num, gv.initial_step_num + gv.max_num_steps): # reset macrostate objects so that macrostates are newly created at every step. if gv.balls_flag == 0 and step_num != gv.initial_step_num: balls = np.zeros((1, gv.num_cvs+3)) balls_array = np.zeros((1, gv.num_cvs)) ball_to_walkers = {} gv.current_num_balls = 0 if gv.simulation_flag != 0 and step_num == gv.initial_step_num: pass else: gv.first_walker = 0 gv.last_walker = gv.total_num_walkers-1 print 'running ' + str(step_num+1) + '-th step' os.chdir(gv.main_directory) f = open('bash_script_input_file.txt', 'w') f.write(str(gv.first_walker)) f.write(' first_' + str(gv.last_walker) + '_last') f.close() # first, run simulation or clean up unfinished processes with bash script. t0 = time() if (gv.simulation_flag == 3 or gv.simulation_flag == 4) and step_num == gv.initial_step_num: pass elif gv.simulation_flag == 2 and step_num == gv.initial_step_num: os.system('./clean_up.sh') else: os.system('./simulations.sh') # second, create macrostates and assign or bin walkers to macrostates. t1 = time() if gv.enhanced_sampling_flag == 1: balls, balls_array = functions.threshold_binning(step_num, walker_list, temp_walker_list, balls, balls_array, ball_to_walkers) else: balls, balls_array = functions.binning(step_num, walker_list, temp_walker_list, balls, balls_array, ball_to_walkers) t2 = time() # third, perform spectral clustering if enhanced_sampling_flag = 2. if gv.enhanced_sampling_flag == 2 and gv.num_balls_for_sc <= gv.num_occupied_balls and gv.sc_performed == 0 \ and gv.sc_start == -1: # start fixing macrostates from this point on until we finish calculating the transition matrix gv.balls_flag = 1 gv.sc_start = step_num if gv.enhanced_sampling_flag == 2 and gv.sc_performed == 0 and gv.sc_start != -1: functions.calculate_trans_mat_for_sc(step_num, temp_walker_list, balls, balls_array) if gv.enhanced_sampling_flag == 2 and gv.sc_performed == 1 and gv.sc_start != -1: ball_clusters_list = functions.spectral_clustering(step_num, balls) # fourth, resample walkers for every macrostate. if gv.sc_performed == 1: balls = functions.resampling_for_sc(walker_list, temp_walker_list, balls, ball_to_walkers, ball_clusters_list) else: balls = functions.resampling(step_num, walker_list, temp_walker_list, balls, ball_to_walkers) else: balls = functions.resampling(step_num, walker_list, temp_walker_list, balls, ball_to_walkers) # finally, output the results as text files. balls = functions.print_status(step_num, walker_list, balls, ball_to_walkers) t3 = time() os.chdir(gv.main_directory+'/CAS') f = open('time_record.txt', 'a') f.write(str(step_num+1) + '-th step: simulation time: ' + str(t1-t0) + ' binning time: ' + str(t2-t1) + ' resampling time: ' + str(t3-t2) + '\n') f.close()
+ Increased Storage in the Text Box within Datalocker + Windows are now Transient to each other;You cant interact with the root window until the child window is closed - This also fixes the issue of having multiple of the same window open ''' # Change this text if program is modified or updated version = "Encryptor v.16" # Import Function.py and other modules import functions as imp import tkinter as tk from tkinter import messagebox from cryptography.fernet import Fernet #Creating Missing Files imp.initialize() # Finish Button Command for Data Locker def finish_button(): txt = textbox.get('1.0',tk.END) imp.encrypt_and_store(txt, username) messagebox.showinfo('Info',"Data Saved in File! You may close the program safely now") # The Data Locker Window def Data_Locker(): window = tk.Toplevel() window.title("Your Data Locker") window.iconbitmap(r"iconlocked.ico") window.resizable(0,0) tk.Label(window,text = "Your Data Locker",font = ('Consolas',24)).grid(row = 1,column = 0,columnspan = 2)
# Made by: Jose Lorenzo Castro # Date made: 10 Aug 2019 #!/usr/bin/env python import os import sqlite3 from flask import Flask, request, render_template import functions as fun app = Flask(__name__) #fun.cleanSlate() fun.initialize() #test = fun.findTwoVar('Student', 'Castro', 'Jose Lorenzo') #if (test): # print ('Found Record') #else: # print ('Sadness') @app.route('/') def index(): return render_template("home.html") @app.route('/add') def addDir(): return render_template("add/add.html")