def intersection(self, hashes): """Iterate over values from `hashes` which exist in the index.""" # sqlite has a compile time limit of 999, see: # https://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber for chunk in lchunks(999, hashes): cmd = "SELECT checksum FROM {} WHERE checksum IN ({})".format( self.INDEX_TABLE, ",".join("?" for hash_ in chunk)) for (hash_, ) in self._execute(cmd, chunk): yield hash_
def create_chunks(): some_list = [1, 2, 3, 4, 5] print(lchunks(3, some_list))
# sub.loc[sub.index[i]] = w,h,row.strip(' ') else: for bb, seg, label in zip(bbs, segms, labels): prob = "{:.8f}".format( bb[4]) if args.eight_digit else "{:.6f}".format( bb[4]) mask = maskUtils.decode(seg).astype(np.bool) rle = encode_binary_mask(mask).decode("utf-8") row += (label + ' ' + prob + ' ' + rle + ' ') if args.expand: for parent in all_keyed_child[label]: row += (parent + ' ' + prob + ' ' + rle + ' ') df.loc[sub.index.values[i]] = w, h, row.strip(' ') return df chunks = funcy.lchunks(int(len(i_lst) / 100), i_lst) p = Pool(processes=num_processes) df_list = list( tqdm(p.imap(process_img, chunks, chunksize=1), total=len(chunks))) p.close() p.join() print(f"len(df_list) = " + str(len(df_list))) df_total = pd.concat(df_list) print(f"df_total.shape = " + str(df_total.shape)) df_total.ImageWidth = df_total.ImageWidth.astype('int') df_total.ImageHeight = df_total.ImageHeight.astype('int') df_total.reset_index().to_csv(pkl_path.replace('.pkl', '.csv').replace(
0.5).astype('uint8') if LB_flag: # compress and base64 encoding -- binary_str = zlib.compress( mask.encode(wt_avg_msk)['counts'], zlib.Z_BEST_COMPRESSION) d_updated_msk[i1] = base64.b64encode( binary_str).decode() else: d_updated_msk[i1] = mask.encode( wt_avg_msk)['counts'].decode() if mask_voting: return suppresed, d_updated_msk else: return suppresed chunks = funcy.lchunks(int(len(df.ImageID.unique()) / 100), df.ImageID.unique()) num_processes = 12 p = Pool(processes=num_processes) if mask_voting: tuple_lst = list( tqdm(p.imap(partial(process_img_lst, df=df), chunks, chunksize=1), total=len(chunks))) else: suppresed_lst = list( tqdm(p.imap(partial(process_img_lst, df=df), chunks, chunksize=1), total=len(chunks))) p.close() p.join() if mask_voting: suppresed_lst = [x[0] for x in tuple_lst]