Example #1
0
def betas_fused_corr(net_s, net_a, orth):

    (ns, gs, ts) = load_network(net_s)
    (na, ga, ta) = load_network(net_a)
    #we want to enumerate the constraints, fused_L2 can do that
    constraints = fl.orth_to_constraints(['B_subtilis','B_anthracis'], [gs, ga], [ts, ta], orth, 0)
    
    coeffs_s = []
    coeffs_a = []
    for con in constraints:
        
        if con.c1.sub == 1:
            continue
        beta_s = ns[con.c1.r, con.c1.c]
        beta_a = na[con.c2.r, con.c2.c]
        coeffs_s.append(beta_s)
        coeffs_a.append(beta_a)
    return np.corrcoef(coeffs_s, coeffs_a)[0,1]
Example #2
0
def betas_fused_visualize(net_s, net_a, orth):
    from matplotlib import pyplot as plt
    (ns, gs, ts) = load_network(net_s)
    (na, ga, ta) = load_network(net_a)
    #we want to enumerate the constraints, fused_L2 can do that
    constraints = fl.orth_to_constraints(['B_subtilis','B_anthracis'], [gs, ga], [ts, ta], orth, 0)
    
    coeffs_s = []
    coeffs_a = []
    for con in constraints:
        
        if con.c1.sub == 1:
            continue
        beta_s = ns[con.c1.r, con.c1.c]
        beta_a = na[con.c2.r, con.c2.c]
        coeffs_s.append(beta_s)
        coeffs_a.append(beta_a)
    print np.corrcoef(coeffs_s, coeffs_a)
    plt.scatter(coeffs_s, coeffs_a)
    plt.xlabel('B subtilis')
    plt.ylabel('B anthracis')
    plt.show()
    cs = np.array(coeffs_s)
    ca = np.array(coeffs_a)