def filteredAccCB(self, msg):
        self.addData(
            [msg.accel.linear.x, msg.accel.linear.y, msg.accel.angular.z])

        if (len(self.samples) > self.window_size):
            self.samples.pop(0)

        output_msg = sensorFusionMsg()

        self.changeDetection(len(self.samples))

        cur = np.array(self.cum_sum, dtype=object)

        #Filling Message
        output_msg.header.frame_id = self.frame
        output_msg.window_size = self.window_size
        #print ("Accelerations " , x,y,z)

        if any(t > self.threshold for t in cur):
            output_msg.msg = sensorFusionMsg.ERROR
            print("Collision Filter")

        output_msg.header.stamp = rospy.Time.now()
        output_msg.sensor_id.data = self.sensor_id
        output_msg.data = cur
        output_msg.weight = self.weight

        if not self.is_disable and self.is_collision_expected:
            self.pub.publish(output_msg)
Example #2
0
    def gps_CB(self, msg):
        X = np.array([[msg.latitude, msg.longitude, msg.altitude]])
        fb_msg = sensorFusionMsg()
        fb_msg.sensor_id.data = "GPS"
        """
        if self.is_training:
            self.clf.fit(X)

        else:
            detected_class = self.clf.predict(X)

            if detected_class < 0:
                fb_msg.msg = sensorFusionMsg.ERROR
                rospy.logwarn('Event Detected')
        self.pub.publish(fb_msg)
        """

        self._ax[0].scatter(X.reshape(3, -1)[0, -1],
                            X.reshape(3, -1)[1, -1],
                            color=self.color[-1])
        self._ax[1].scatter(X.reshape(3, -1)[0, -1],
                            X.reshape(3, -1)[2, -1],
                            color=self.color[-2])
        self._ax[2].scatter(X.reshape(3, -1)[1, -1],
                            X.reshape(3, -1)[2, -1],
                            color=self.color[-3])

        plt.draw()
        #plt.show(False)
        rospy.sleep(0.1)
    def accCB(self, msg):

        if self.is_over_lapping_required:
            self.addData(
                [msg.accel.linear.x, msg.accel.linear.y, msg.accel.angular.z])
            if len(self.samples) > self.window_size:
                self.samples.pop(0)

        else:
            if (self.i < self.window_size) and len(
                    self.samples) < self.window_size:
                self.addData([
                    msg.accel.linear.x, msg.accel.linear.y, msg.accel.angular.z
                ])
                self.i = self.i + 1
            else:
                self.samples.pop(0)
                return

        output_msg = sensorFusionMsg()

        current_mean = np.mean(self.samples, axis=0)
        #print (current_mean)
        tmp = (np.array(self.last_mean) - np.array(current_mean))
        x, y, z = 9.81 * (tmp / 255) * 2
        magnitude = np.sqrt(np.power(x, 2) + np.power(y, 2) + np.power(z, 2))
        #print ("magnitude ", magnitude)
        #print (np.arccos(x/magnitude), np.arccos(y/magnitude), np.arccos(z/magnitude))
        output_msg.angle = np.arctan2(
            y, x)  #np.arccos(x/magnitude)#np.arctan2(y,x)
        #Detecting Collisions

        self.changeDetection(len(self.samples))

        cur = np.array(self.cum_sum, dtype=object)
        #Filling Message
        output_msg.header.frame_id = self.frame
        output_msg.window_size = self.window_size
        #print ("Accelerations " , x,y,z)
        self.i = 0

        output_msg.header.stamp = rospy.Time.now()
        output_msg.sensor_id.data = self.sensor_id
        output_msg.data = cur
        output_msg.weight = self.weight

        if any(cur[0:3] > self.threshold):
            output_msg.msg = sensorFusionMsg.ERROR
            print("Collision FOUND")
            if self.is_collision_expected and self.is_filtered_available:
                print("Colliison Filtered")
                output_msg.msg = sensorFusionMsg.WARN
                self.is_collision_expected = False
            if not self.is_disable:
                self.pub.publish(output_msg)
    def laserCB(self, msg):

        if self.is_over_lapping_required:

            self.addData([i / msg.range_max for i in msg.ranges])

            while len(self.samples) > self.window_size:
                self.samples.pop(0)

        else:
            if (self.i < self.window_size
                    and len(self.samples) < self.window_size):
                self.addData([i / msg.range_max for i in msg.ranges])
                self.i = self.i + 1
            else:
                self.samples.pop(0)
                return

        msg = sensorFusionMsg()

        self.i = 0
        self.changeDetection(len(self.samples))

        cur = np.array(self.cum_sum)
        cur = np.nan_to_num(cur)
        cur[np.isnan(cur)] = 0
        cur = np.var(cur)

        #Detecting Collisions
        #if any(t > self.threshold for t in cur):

        #if any(t > self.threshold for t in cur):
        data = list()

        if cur > 10000000:
            data.append(0)  #TODO
        else:
            data.append(cur)

        if cur > self.threshold and not self.is_disable:
            #Filling Message
            msg.header.frame_id = self.frame
            msg.window_size = self.window_size
            msg.header.stamp = rospy.Time.now()
            msg.msg = sensorFusionMsg.ERROR
            msg.sensor_id.data = self.sensor_id
            msg.data = data
            msg.weight = self.weight
            self.pub.publish(msg)
Example #5
0
    def imuCB(self,msg):
        X = np.array([[msg.latitude, msg.longitude, msg.speed]])
        fb_msg = sensorFusionMsg()
        fb_msg.sensor_id.data = "GPS"

        if self.is_training:
            self.clf.fit(X)

        else:
            detected_class = self.clf.predict(X)

            if detected_class < 0:
                fb_msg.msg = sensorFusionMsg.ERROR
                rospy.logwarn('Event Detected')
        self.pub.publish(fb_msg)
Example #6
0
    def run(self):
        try:
            data = self.stream.read(self.CHUNK)
        except IOError as ex:
            if ex[1] != pyaudio.paInputOverflowed:
                raise
            rospy.logwarn("Sync error")
            return

        amplitude = np.fromstring(data, np.int16)

        if self.i < self.window_size:
            self.addData(amplitude)
            self.i = self.i + 1
            if len(self.samples) is self.window_size:
                self.samples.pop(0)
            return

        msg = sensorFusionMsg()

        self.i = 0
        self.changeDetection(len(self.samples))
        cur = np.array(self.cum_sum)
        cur = np.nan_to_num(cur)
        cur[np.isnan(cur)] = 0

        #Filling Message
        msg.header.stamp = rospy.Time.now()
        msg.header.frame_id = self.frame
        msg.window_size = self.window_size

        #Detecting Collisions
        suma = np.sum(np.array(self.cum_sum, dtype=object))
        var = np.var(np.array(self.cum_sum, dtype=object))
        #if var > self.threshold:

        print("S", suma)
        print(var)
        if suma > self.threshold:
            #print ("COllision")
            msg.sensor_id.data = self.sensor_id
            msg.data = np.array(suma)
            msg.weight = self.weight
            msg.msg = sensorFusionMsg.ERROR

            if not self.is_disable:
                self.pub.publish(msg)
    def base_state_CB(self, msg):

        for i in range(4):
            X = np.array(
                [[msg.prop_speed[i], msg.prop_pos[i], msg.steer_pos[i]]])
            fb_msg = sensorFusionMsg()
            fb_msg.sensor_id.data = "wheel_" + str(i)

            if self.is_training:
                self.clf[i].fit(X)
            else:
                detected_class = self.clf[i].predict(X)

                if detected_class < 0:
                    fb_msg.msg = sensorFusionMsg.ERROR
                    rospy.logwarn("Error " + str(i))

            self.pub[i].publish(fb_msg)
Example #8
0
    def publishMsg(self,data):
        output_msg = sensorFusionMsg()
        #Filling Message
        output_msg.header.frame_id = self.frame
        output_msg.window_size = self.window_size
        #print ("Accelerations " , x,y,z)
        output_msg.sensor_id.data = self.sensor_id

        #if any(t > self.threshold for t in data[3:5]):
        print data
        if any(t for t in data) > self.threshold:
            rospy.logwarn("Collision")
            output_msg.msg = sensorFusionMsg.ERROR

        #data[0] = data[0] - 10.8 #TODO
        #data[1] = data[1] - 6.67#TODO
        #data[2] = data[2] + 14.02#TODO
        output_msg.data = data
        output_msg.header.stamp = rospy.Time.now()

        if not self.is_disable:
            self.pub.publish(output_msg)
Example #9
0
 def publishMsg(self, data):
     output_msg = sensorFusionMsg()
     #Filling Message
     output_msg.header.frame_id = self.frame
     output_msg.window_size = self.window_size
     #print ("Accelerations " , x,y,z)
     #print len(self.cum_sum)
     suma = np.nansum(self.cum_sum)
     var = np.var(self.cum_sum)
     rospy.loginfo("Sum %d", suma)
     rospy.loginfo("Var %f", var)
     if suma >= self.threshold and not self.is_disable:
         rospy.logwarn("Sum %d", suma)
         rospy.logwarn("Var %f", var)
         output_msg.msg = sensorFusionMsg.ERROR
         output_msg.header.stamp = rospy.Time.now()
         output_msg.sensor_id.data = self.sensor_id
         tmp = list()
         tmp.append(suma)
         output_msg.data = tmp
         output_msg.weight = self.weight
         self.pub.publish(output_msg)
Example #10
0
    def imuCB(self, msg):
        X = np.array([[
            msg.linear_acceleration.x, msg.linear_acceleration.y,
            msg.linear_acceleration.z
        ]])

        if self.is_training:
            self.clf.fit(X)

        else:
            fb_msg = sensorFusionMsg()
            fb_msg.sensor_id.data = "sv_detector"
            fb_msg.data = X.flatten()
            detected_class = self.clf.predict(X)

            if detected_class > 0:
                rospy.logwarn('Event Detected')
                fb_msg.msg = sensorFusionMsg.WARN

            else:
                fb_msg.msg = sensorFusionMsg.OK

            self.event_publisher.publish(fb_msg)
Example #11
0
    def imuCB(self, msg):

        if self.is_over_lapping_required:
            self.addData([
                msg.linear_acceleration.x,
                msg.linear_acceleration.y,
                msg.linear_acceleration.z,  #]), #]) #Just Linear For Testing
                msg.angular_velocity.x,
                msg.angular_velocity.y,
                msg.angular_velocity.z
            ])  #Angula
            while len(self.samples) > self.window_size:
                self.samples.pop(0)

        else:
            if (self.i < self.window_size) and len(
                    self.samples) < self.window_size:
                self.addData([
                    msg.linear_acceleration.x,
                    msg.linear_acceleration.y,
                    msg.linear_acceleration.
                    z,  #])#, #]) #Just Linear For Testing
                    msg.angular_velocity.x,
                    msg.angular_velocity.y,
                    msg.angular_velocity.z
                ])  #Angula
                self.i = self.i + 1

                if len(self.samples) is self.window_size:
                    self.samples.pop(0)
                return

        output_msg = sensorFusionMsg()
        self.i = 0
        self.changeDetection(len(self.samples))

        cur = np.array(self.cum_sum, dtype=object)
        #Filling Message
        output_msg.header.frame_id = self.frame
        output_msg.window_size = self.window_size
        covariance = np.var(cur)

        #current_angle = math.atan2(self.samples[-1][1] - self.samples[-2][1],self.samples[-2][0] - self.samples[-1][0])
        #output_msg.angle = current_angle

        output_msg.header.stamp = rospy.Time.now()
        output_msg.sensor_id.data = self.sensor_id
        output_msg.data = cur
        output_msg.weight = self.weight

        if self.is_covariance_detector_enable:
            if any(covariance > self.threshold):
                rospy.logwarn(covariance)
                rospy.logwarn(cur > self.threshold)
                output_msg.msg = sensorFusionMsg.ERROR

                if self.is_collision_expected and self.is_filtered_available:
                    print("Colliison Filtered")
                    output_msg.msg = sensorFusionMsg.WARN
                    self.is_collision_expected = False
                if not self.is_disable:
                    self.pub.publish(output_msg)
        else:
            print("here", cur[0:3])

            if any(cur[0:3] > self.threshold):
                print("here2")
                rospy.logwarn(cur)
                if cur[5] > self.threshold[2]:
                    rospy.logwarn("Angle")
                x, y, z = (cur[0:3] > self.threshold)

                if x and not y:
                    print("NORTH")

                if not x and y:
                    print("EAST")
                if x and y:
                    print("NE")

                output_msg.msg = sensorFusionMsg.ERROR

                if self.is_collision_expected and self.is_filtered_available:
                    print("Colliison Filtered")
                    output_msg.msg = sensorFusionMsg.WARN
                    self.is_collision_expected = False

                if not self.is_disable:
                    self.pub.publish(output_msg)