Example #1
0
def gen_crop_transform_with_instance(crop_size,
                                     image_size,
                                     instances,
                                     crop_box=True):
    """
    Generate a CropTransform so that the cropping region contains
    the center of the given instance.

    Args:
        crop_size (tuple): h, w in pixels
        image_size (tuple): h, w
        instance (dict): an annotation dict of one instance, in Detectron2's
            dataset format.
    """
    instance = (np.random.choice(instances), )
    instance = instance[0]
    crop_size = np.asarray(crop_size, dtype=np.int32)
    bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"],
                           BoxMode.XYXY_ABS)
    center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5
    # print(image_size[0], center_yx[0], image_size[1], center_yx[1])
    # if not (image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1]):
    #     center_yx = (bbox[1] + bbox[3]) * 0.1, (bbox[0] + bbox[2]) * 0.1
    assert (image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1]
            ), "The annotation bounding box is outside of the image!"
    assert (image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1]
            ), "Crop size is larger than image size!"

    min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
    max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
    max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))

    y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
    x0 = np.random.randint(min_yx[1], max_yx[1] + 1)

    # if some instance is cropped extend the box
    if not crop_box:
        num_modifications = 0
        modified = True

        # convert crop_size to float
        crop_size = crop_size.astype(np.float32)
        while modified:
            modified, x0, y0, crop_size = adjust_crop(x0, y0, crop_size,
                                                      instances)
            num_modifications += 1
            if num_modifications > 100:
                raise ValueError(
                    "Cannot finished cropping adjustment within 100 tries (#instances {})."
                    .format(len(instances)))
                return T.CropTransform(0, 0, image_size[1], image_size[0])

    return T.CropTransform(*map(int, (x0, y0, crop_size[1], crop_size[0])))
Example #2
0
    def test_register(self):
        """
        Test register.
        """
        dtype = "int"

        def add1(t, x):
            return x + 1

        def flip_sub_width(t, x):
            return x - t.width

        T.Transform.register_type(dtype, add1)
        T.HFlipTransform.register_type(dtype, flip_sub_width)

        transforms = T.TransformList([
            T.ScaleTransform(0, 0, 0, 0, 0),
            T.CropTransform(0, 0, 0, 0),
            T.HFlipTransform(3),
        ])
        self.assertEqual(transforms.apply_int(3), 2)

        # Testing __add__, __iadd__, __radd__, __len__.
        transforms = transforms + transforms
        transforms += transforms
        transforms = T.NoOpTransform() + transforms
        self.assertEqual(len(transforms), 13)

        with self.assertRaises(AssertionError):
            T.HFlipTransform.register_type(dtype, lambda x: 1)

        with self.assertRaises(AttributeError):
            transforms.no_existing
Example #3
0
 def test_crop_invalid_polygons(self):
     # Ensure that invalid polygons are skipped.
     transform = T.CropTransform(3, 4, 20, 20)
     polygon = [
         (0, 0),
         (0, 3),
         (3, 3),
         (3, 0),
         (2, 0),
         (2, 2),
         (1, 2),
         (1, 1),
         (2, 1),
         (2, 0),
         (0, 0),
     ]
     cropped_polygons = transform.apply_polygons([polygon])
     self.assertEqual(0, len(cropped_polygons))
Example #4
0
    def test_register(self):
        """
        Test register.
        """
        dtype = "int"

        def add1(t, x):
            return x + 1

        def flip_sub_width(t, x):
            return x - t.width

        T.Transform.register_type(dtype, add1)
        T.HFlipTransform.register_type(dtype, flip_sub_width)

        transforms = T.TransformList([
            T.ScaleTransform(0, 0, 0, 0, 0),
            T.CropTransform(0, 0, 0, 0),
            T.HFlipTransform(3),
        ])
        self.assertEqual(transforms.apply_int(3), 2)

        with self.assertRaises(AssertionError):
            T.HFlipTransform.register_type(dtype, lambda x: 1)
Example #5
0
 def test_transformlist_flatten(self):
     t0 = T.HFlipTransform(width=100)
     t1 = T.ScaleTransform(3, 4, 5, 6)
     t2 = T.CropTransform(4, 5, 6, 7)
     t = T.TransformList([T.TransformList([t0, t1]), t2])
     self.assertEqual(len(t.transforms), 3)