Example #1
0
def parse_slim_organization(lines, mtypes, elements, mutrate):
    start = lines.index("#CHROMOSOME ORGANIZATION")
    end = get_next_block_starts(lines, start)
    #need to get sum of all weights per mutation type
    ttlweights = {}
    for key1 in elements:
        ttlweights[key1] = 0.
        for key2 in elements[key1]:
            ttlweights[key1] = ttlweights[key1] + elements[key1][key2]
    nregions = []
    sregions = []
    mun = 0
    mus = 0
    for i in lines[start + 1:start + 1 + end]:
        t = i.split()
        ebeg = float(t[1])
        eend = float(t[2])
        for key in elements[t[0]]:
            mt = mtypes[key]
            weight = elements[t[0]][key] / ttlweights[t[0]]
            ##In this block, we halve s or mean s,
            ##and double h, to convert from SLiM's
            ##fitness model of 1,1+hs,1+s to the
            ##1,1+sh,1+2s used here.
            if mt[1] == 'f':
                if mt[2] == 0.:  #is a neutral mutation
                    mun = mun + mutrate * weight * (eend - ebeg + 1.)
                    nregions.append(
                        fwdpy.Region(ebeg - 1., eend, mutrate * weight))
                else:
                    mus = mus + mutrate * weight * (eend - ebeg + 1.)
                    sregions.append(
                        fwdpy.ConstantS(ebeg - 1., eend, mutrate * weight,
                                        0.5 * mt[2], 2 * mt[0]))
            elif mt[1] == 'e':
                mus = mus + mutrate * weight * (eend - ebeg + 1.)
                sregions.append(
                    fwdpy.ExpS(ebeg - 1., eend, mutrate * weight, 0.5 * mt[2],
                               2 * mt[0]))
            elif mt[1] == 'g':
                mus = mus + mutrate * weight * (eend - ebeg + 1.)
                sregions.append(
                    fwdpy.GammaS(ebeg - 1., eend, mutrate * weight,
                                 0.5 * mt[2], mt[3], 2 * mt[0]))
            else:
                raise RuntimeError("invalid DFE encountered")
    return {
        'nregions': nregions,
        'sregions': sregions,
        'mu_neutral': mun,
        'mu_selected': mus
    }
Example #2
0
import unittest
import fwdpy
import numpy as np

nregions = [fwdpy.Region(0, 1, 1), fwdpy.Region(2, 3, 1)]
sregions = [fwdpy.ExpS(1, 2, 1, -0.1), fwdpy.ExpS(1, 2, 0.01, 0.001)]
rregions = [fwdpy.Region(0, 3, 1)]
rng = fwdpy.GSLrng(100)
N = 1000
NGENS = 100
popsizes = np.array([N], dtype=np.uint32)
popsizes = np.tile(popsizes, NGENS)
pops = fwdpy.evolve_regions(rng, 1, N, popsizes[0:], 0.001, 0.0001, 0.001,
                            nregions, sregions, rregions)

#The sum of the gamete counts must be 2*(deme size):
#mpops = fwdpy.evolve_regions_split(rng,pops,popsizes[0:],popsizes[0:],0.001,0.0001,0.001,nregions,sregions,rregions,[0]*2)


class test_singlepop_views(unittest.TestCase):
    def testNumGametes(self):
        gams = fwdpy.view_gametes(pops[0])
        nsingle = 0
        for i in gams:
            nsingle += i['n']
        self.assertEqual(nsingle, 2000)

    def testDipsize(self):
        dips_single = fwdpy.view_diploids(pops[0], [0, 1, 2])
        self.assertEqual(len(dips_single), 3)
Example #3
0
#The next three lines process and compile our custom fitness module:
import pyximport
pyximport.install()
import test_fwdpy_extensions.test_custom_fitness as tfp
#import fwdpy and numpy as usual
import fwdpy as fp
import numpy as np

rng = fp.GSLrng(101)
rngs = fp.GSLrng(202)
p = fp.SpopVec(3, 1000)
s = fp.NothingSampler(len(p))

n = np.array([1000] * 1000, dtype=np.uint32)
nr = [fp.Region(0, 1, 1)]
sr = [fp.ExpS(0, 1, 1, 0.1)]

#Now, let's do some evolution with our 'custom' fitness functions:
fitness = tfp.AdditiveFitnessTesting()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)

fitness = tfp.AaOnlyTesting()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)

fitness = tfp.GBRFitness()
fp.evolve_regions_sampler_fitness(rng, p, s, fitness, n, 0.001, 0.001, 0.001,
                                  nr, sr, nr, 1)
Example #4
0
import time

# In[26]:

##Info
dt = datetime.datetime.now()
print("This example was processed using ", fp.pkg_version(), "on", dt.month,
      "/", dt.day, "/", dt.year)
print("The dependency versions are", fp.pkg_dependencies())

# In[27]:

#set up our sim
rng = fp.GSLrng(101)
nregions = [fp.Region(0, 1, 1), fp.Region(2, 3, 1)]
sregions = [fp.ExpS(1, 2, 1, -0.1), fp.ExpS(1, 2, 0.1, 0.001)]
rregions = [fp.Region(0, 3, 1)]
popsizes = np.array([1000] * 10000, dtype=np.uint32)

# In[28]:

#Run the sim
pops = fp.evolve_regions(rng, 4, 1000, popsizes[0:], 0.001, 0.0001, 0.001,
                         nregions, sregions, rregions)

# In[29]:

#Take samples from the simulation
samples = [fp.get_samples(rng, i, 20) for i in pops]

# ## Calculating sliding windows