t_a = np.zeros(n_T) sdr = np.zeros(n_T) fsrs = np.zeros(n_T) opds = np.zeros(n_T) theta_t_0 = theta_t for i in range(n_T): n1 = h1.generate_n_glass(h1.t + d_T[i]) d1 = h1.d_glass_thermal_expansion(h1.t + d_T[i]) print('glass', 2 * (h1.d_glass * h1.n_glass - n1 * d1) / lam) n2 = h1.generate_n_air(h1.t + d_T[i]) d2 = h1.d_air_thermal_expansion(h1.t + d_T[i]) print('air', 2 * (h1.n_air * h1.d_air - n2 * d2) / lam) opd = h1.opd_exact_pure(theta_t, n1, d1, n2, d2) opds[i] = opd fsrs[i] = h1.fsr(opd) t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(opd)) t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(opd)) sdr[i] = t_m[i] / t_a[i] fig, ax = plt.subplots() # ax.plot(d_T, t_a, color='black') ax.plot(d_T, sdr, color='black') # ax.plot(d_T, (opds - fopd) / lam, color='black') # ax.plot(d_d1 * 1000, fsrs, color='black') # ax.set_ylim([0, 400]) ax.grid(True) ax.set_xlabel(r"$\Delta\theta_t$ (degrees)") ax.set_ylabel(r"SDR") ax.set_title("SDR v. Tilt Angle Variation") ax.text( 2.1, 110, r"$\theta_t$($\Delta\theta_t$=0) = {0}$^\circ$".format(
theta_t = 1.5 * np.pi / 180 gamma_m = 1.40e9 / switch_lam # molecular signal spectral width gamma_a = 50e6 / switch_lam # aerosol signal spectral width fopd = 0.15 * switch_lam t_ref = 20 t = 20 p = 1 f = 0.1 h1 = Copper(fopd, theta_t, gamma_m, gamma_a, lam, t, t_ref, p, d_opd_d_t=lam / 5, glass=LITHOSIL_Q) n_nu = 100 theta_d = 0.002 d_nu = np.linspace(0.01e9, 0.1e9, n_nu) t_m = np.zeros(n_nu) t_a = np.zeros(n_nu) sdr = np.zeros(n_nu) opd = h1.opd_exact_pure(theta_t, h1.n_glass, h1.d_glass, h1.n_air, h1.d_air) for i in range(n_nu): t_m[i] = h1.overall_transmittance(theta_d, f, h1.gamma_m, h1.fsr(opd), phase_dev=d_nu[i]) t_a[i] = h1.overall_transmittance(theta_d, f, h1.gamma_a, h1.fsr(opd), phase_dev=d_nu[i]) sdr[i] = t_m[i] / t_a[i] fig, ax = plt.subplots() ax.plot(d_nu / 1e9, sdr, color='black') ax.grid(True) ax.set_xlabel(r"Locking Error (GHz)") ax.set_ylabel(r"SDR") ax.set_title("SDR v. Locking Error") plt.show()