#GALSIM_DIR=os.path.join("/Path", "To", "Your", "Repo") GALSIM_DIR = os.path.join("/Users", "browe", "great3", "galsim") OUTFILE = os.path.join( 'results', 'normalizationv3_G10_QuadPS_N' + str(NREPEAT) + '_noise_sigma' + str(NOISE_SIGMA) + '.pkl') if __name__ == "__main__": reference_ps = g3metrics.read_ps(galsim_dir=GALSIM_DIR) # Make the truth catalogues (a list of 2D, NGRIDxNGRID numpy arrays), reusing the reference_ps # each time for simplicity g1true_list, g2true_list = g3metrics.make_var_truth_catalogs( 1, NIMS, [ reference_ps, ], ngrid=NGRID, grid_units=galsim.degrees) # Define some empty storage arrays qG10unnorm = np.empty((len(CTEST), len(MTEST), NREPEAT)) qQuadPSunnorm = np.empty((len(CTEST), len(MTEST), NREPEAT)) # TEMP: Make all the PS realizations (of the truth) the same to see if this alters noise props g1true_list = [ g1true_list[0], ] * len(g1true_list) g2true_list = [ g2true_list[0], ] * len(g2true_list) # Then generate submissions, and truth submissions for c, i in zip(CTEST, range(len(CTEST))):
# Load up the reference PS reference_ps = g3metrics.read_ps(galsim_dir=GALSIM_DIR, scale=SCALEPS) # Define some empty storage arrays qG3S_AMD_unnorm = np.empty((len(CVALS), len(MVALS), NMONTE)) qG3S_QMD_unnorm = np.empty((len(CVALS), len(MVALS), NMONTE)) # Then loop for krepeat in range(NMONTE): # Make the truth catalogues (a list of 2D, NGRIDxNGRID numpy arrays), reusing the reference # ps each time for simplicity print "Generating truth tables for Monte Carlo realization = "+str(krepeat + 1)+"/"+\ str(NMONTE) g1true_list, g2true_list = g3metrics.make_var_truth_catalogs( NFIELDS, NIMS, [reference_ps,] * NFIELDS, ngrid=NGRID, dx_grid=DX_GRID, grid_units=galsim.degrees) # Then generate submissions, and truth submissions for c, i in zip(CVALS, range(NBINS_TEST)): print "Calculating CF metrics with c_i = "+str(c) for m, j in zip(MVALS, range(NBINS_TEST)): print "Calculating CF metrics with m_i = "+str(m) # Make a fake submission theta, mapEsubs, mapBsubs, maperrsubs, mapEtrues, mapBtrues = \ g3metrics.make_submission_var_shear_CF( c1=c, c2=c, m1=m, m2=m, g1true_list=g1true_list, g2true_list=g2true_list, noise_sigma=NOISE_SIGMA, dx_grid=DX_GRID, nbins=NBINS_ANGULAR, min_sep=MIN_SEP, max_sep=MAX_SEP) # Calculate the metrics qG3S_AMD_unnorm[i, j, krepeat] = g3metrics.metricG3S_AMD(
reference_ps = g3metrics.read_ps(galsim_dir=GALSIM_DIR, scale=SCALEPS) # Define some empty storage arrays qG3S_AMD_unnorm = np.empty((len(CVALS), len(MVALS), NMONTE)) qG3S_QMD_unnorm = np.empty((len(CVALS), len(MVALS), NMONTE)) # Then loop for krepeat in range(NMONTE): # Make the truth catalogues (a list of 2D, NGRIDxNGRID numpy arrays), reusing the reference # ps each time for simplicity print "Generating truth tables for Monte Carlo realization = "+str(krepeat + 1)+"/"+\ str(NMONTE) g1true_list, g2true_list = g3metrics.make_var_truth_catalogs( NFIELDS, NIMS, [ reference_ps, ] * NFIELDS, ngrid=NGRID, dx_grid=DX_GRID, grid_units=galsim.degrees) # Then generate submissions, and truth submissions for c, i in zip(CVALS, range(NBINS_TEST)): print "Calculating CF metrics with c_i = " + str(c) for m, j in zip(MVALS, range(NBINS_TEST)): print "Calculating CF metrics with m_i = " + str(m) # Make a fake submission theta, mapEsubs, mapBsubs, maperrsubs, mapEtrues, mapBtrues = \ g3metrics.make_submission_var_shear_CF( c1=c, c2=c, m1=m, m2=m, g1true_list=g1true_list, g2true_list=g2true_list, noise_sigma=NOISE_SIGMA, dx_grid=DX_GRID, nbins=NBINS_ANGULAR, min_sep=MIN_SEP, max_sep=MAX_SEP)
MTEST = [1.e-3, 3.e-3, 1.e-2, 3.e-2, 1.e-1] NREPEAT = 1000 #GALSIM_DIR=os.path.join("/Path", "To", "Your", "Repo") GALSIM_DIR=os.path.join("/Users", "browe", "great3", "galsim") OUTFILE = os.path.join( 'results', 'normalizationv3_G10_QuadPS_N'+str(NREPEAT)+'_noise_sigma'+str(NOISE_SIGMA)+'.pkl') if __name__ == "__main__": reference_ps = g3metrics.read_ps(galsim_dir=GALSIM_DIR) # Make the truth catalogues (a list of 2D, NGRIDxNGRID numpy arrays), reusing the reference_ps # each time for simplicity g1true_list, g2true_list = g3metrics.make_var_truth_catalogs( 1, NIMS, [reference_ps,], ngrid=NGRID, grid_units=galsim.degrees) # Define some empty storage arrays qG10unnorm = np.empty((len(CTEST), len(MTEST), NREPEAT)) qQuadPSunnorm = np.empty((len(CTEST), len(MTEST), NREPEAT)) # TEMP: Make all the PS realizations (of the truth) the same to see if this alters noise props g1true_list = [g1true_list[0],] * len(g1true_list) g2true_list = [g2true_list[0],] * len(g2true_list) # Then generate submissions, and truth submissions for c, i in zip(CTEST, range(len(CTEST))): print "Calculating PS metrics with c_i = "+str(c) for m, j in zip(MTEST, range(len(MTEST))): print "Calculating PS metrics with m_i = "+str(m)