def test_reciprocal_frame_test(): GA_Printer.on() metric = '1 # #,'+ \ '# 1 #,'+ \ '# # 1,' (e1,e2,e3) = MV.setup('e1 e2 e3',metric) E = e1^e2^e3 Esq = (E*E).scalar() assert str(E) == 'e1^e2^e3' assert str(Esq) == '(e1.e2)**2 - 2*(e1.e2)*(e1.e3)*(e2.e3) + (e1.e3)**2 + (e2.e3)**2 - 1' Esq_inv = 1/Esq E1 = (e2^e3)*E E2 = (-1)*(e1^e3)*E E3 = (e1^e2)*E assert str(E1) == '((e2.e3)**2 - 1)*e1 + ((e1.e2) - (e1.e3)*(e2.e3))*e2 + (-(e1.e2)*(e2.e3) + (e1.e3))*e3' assert str(E2) == '((e1.e2) - (e1.e3)*(e2.e3))*e1 + ((e1.e3)**2 - 1)*e2 + (-(e1.e2)*(e1.e3) + (e2.e3))*e3' assert str(E3) == '(-(e1.e2)*(e2.e3) + (e1.e3))*e1 + (-(e1.e2)*(e1.e3) + (e2.e3))*e2 + ((e1.e2)**2 - 1)*e3' w = (E1|e2) w = w.expand() assert str(w) == '0' w = (E1|e3) w = w.expand() assert str(w) == '0' w = (E2|e1) w = w.expand() assert str(w) == '0' w = (E2|e3) w = w.expand() assert str(w) == '0' w = (E3|e1) w = w.expand() assert str(w) == '0' w = (E3|e2) w = w.expand() assert str(w) == '0' w = (E1|e1) w = (w.expand()).scalar() Esq = expand(Esq) assert str(simplify(w/Esq)) == '1' w = (E2|e2) w = (w.expand()).scalar() assert str(simplify(w/Esq)) == '1' w = (E3|e3) w = (w.expand()).scalar() assert str(simplify(w/Esq)) == '1' GA_Printer.off() return
def test_reciprocal_frame_test(): metric = '1 # #,'+ \ '# 1 #,'+ \ '# # 1,' (e1, e2, e3) = MV.setup('e1 e2 e3', metric) E = e1 ^ e2 ^ e3 Esq = (E * E).scalar() assert str(E) == 'e1^e2^e3' assert str( Esq ) == '(e1.e2)**2 - 2*(e1.e2)*(e1.e3)*(e2.e3) + (e1.e3)**2 + (e2.e3)**2 - 1' Esq_inv = 1 / Esq E1 = (e2 ^ e3) * E E2 = (-1) * (e1 ^ e3) * E E3 = (e1 ^ e2) * E assert str( E1 ) == '((e2.e3)**2 - 1)*e1 + ((e1.e2) - (e1.e3)*(e2.e3))*e2 + (-(e1.e2)*(e2.e3) + (e1.e3))*e3' assert str( E2 ) == '((e1.e2) - (e1.e3)*(e2.e3))*e1 + ((e1.e3)**2 - 1)*e2 + (-(e1.e2)*(e1.e3) + (e2.e3))*e3' assert str( E3 ) == '(-(e1.e2)*(e2.e3) + (e1.e3))*e1 + (-(e1.e2)*(e1.e3) + (e2.e3))*e2 + ((e1.e2)**2 - 1)*e3' w = (E1 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e3) w = w.expand() assert str(w) == '0' w = (E2 | e1) w = w.expand() assert str(w) == '0' w = (E2 | e3) w = w.expand() assert str(w) == '0' w = (E3 | e1) w = w.expand() assert str(w) == '0' w = (E3 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e1) w = (w.expand()).scalar() Esq = expand(Esq) assert str(simplify(w / Esq)) == '1' w = (E2 | e2) w = (w.expand()).scalar() assert str(simplify(w / Esq)) == '1' w = (E3 | e3) w = (w.expand()).scalar() assert str(simplify(w / Esq)) == '1' return
def test_noneuclidian_distance_calculation(): from sympy import solve,sqrt GA_Printer.on() metric = '0 # #,# 0 #,# # 1' (X,Y,e) = MV.setup('X Y e',metric) assert str((X^Y)*(X^Y)) == '(X.Y)**2' L = X^Y^e B = L*e assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' Bsq = B*B assert str(Bsq) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' Bsq = Bsq.scalar() assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' BeBr =B*e*B.rev() assert str(BeBr) == '((X.Y)*(-(X.Y) + 2*(X.e)*(Y.e)))*e' assert str(B*B) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' assert str(L*L) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' (s,c,Binv,M,S,C,alpha,XdotY,Xdote,Ydote) = symbols('s c (1/B) M S C alpha (X.Y) (X.e) (Y.e)') Bhat = Binv*B R = c+s*Bhat assert str(R) == 'c + (1/B)*s*X^Y - (1/B)*(Y.e)*s*X^e + (1/B)*(X.e)*s*Y^e' Z = R*X*R.rev() Z.obj = expand(Z.obj) Z.obj = Z.obj.collect([Binv,s,c,XdotY]) assert str(Z) == '((1/B)**2*(X.Y)**2*s**2 - 2*(1/B)**2*(X.Y)*(X.e)*(Y.e)*s**2 + 2*(1/B)*(X.Y)*c*s - 2*(1/B)*(X.e)*(Y.e)*c*s + c**2)*X + 2*(1/B)*(X.e)**2*c*s*Y + (2*(1/B)*(X.Y)*(X.e)*s*(-(1/B)*(X.Y)*s + 2*(1/B)*(X.e)*(Y.e)*s - c))*e' W = Z|Y # From this point forward all calculations are with sympy scalars W = W.scalar() assert str(W) == '(1/B)**2*(X.Y)**3*s**2 - 4*(1/B)**2*(X.Y)**2*(X.e)*(Y.e)*s**2 + 4*(1/B)**2*(X.Y)*(X.e)**2*(Y.e)**2*s**2 + 2*(1/B)*(X.Y)**2*c*s - 4*(1/B)*(X.Y)*(X.e)*(Y.e)*c*s + (X.Y)*c**2' W = expand(W) W = simplify(W) W = W.collect([s*Binv]) M = 1/Bsq W = W.subs(Binv**2,M) W = simplify(W) Bmag = sqrt(XdotY**2-2*XdotY*Xdote*Ydote) W = W.collect([Binv*c*s,XdotY]) #Double angle substitutions W = W.subs(2*XdotY**2-4*XdotY*Xdote*Ydote,2/(Binv**2)) W = W.subs(2*c*s,S) W = W.subs(c**2,(C+1)/2) W = W.subs(s**2,(C-1)/2) W = simplify(W) W = W.subs(1/Binv,Bmag) W = expand(W) assert str(W) == '(X.Y)*C - (X.e)*(Y.e)*C + (X.e)*(Y.e) + S*sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd = collect(W,[C,S],exact=True,evaluate=False) Wd_1 = Wd[ONE] Wd_C = Wd[C] Wd_S = Wd[S] assert str(Wd_1) == '(X.e)*(Y.e)' assert str(Wd_C) == '(X.Y) - (X.e)*(Y.e)' assert str(Wd_S) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' assert str(Bmag) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd_1 = Wd_1.subs(Bmag,1/Binv) Wd_C = Wd_C.subs(Bmag,1/Binv) Wd_S = Wd_S.subs(Bmag,1/Binv) lhs = Wd_1+Wd_C*C rhs = -Wd_S*S lhs = lhs**2 rhs = rhs**2 W = expand(lhs-rhs) W = expand(W.subs(1/Binv**2,Bmag**2)) W = expand(W.subs(S**2,C**2-1)) W = W.collect([C,C**2],evaluate=False) a = simplify(W[C**2]) b = simplify(W[C]) c = simplify(W[ONE]) assert str(a) == '(X.e)**2*(Y.e)**2' assert str(b) == '2*(X.e)*(Y.e)*((X.Y) - (X.e)*(Y.e))' assert str(c) == '(X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e) + (X.e)**2*(Y.e)**2' x = Symbol('x') C = solve(a*x**2+b*x+c,x)[0] assert str(expand(simplify(expand(C)))) == '-(X.Y)/((X.e)*(Y.e)) + 1' GA_Printer.off() return
def test_noneuclidian_distance_calculation(): from sympy import solve, sqrt metric = '0 # #,# 0 #,# # 1' (X, Y, e) = MV.setup('X Y e', metric) assert str((X ^ Y) * (X ^ Y)) == '(X.Y)**2' L = X ^ Y ^ e B = L * e assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' Bsq = B * B assert str(Bsq) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' Bsq = Bsq.scalar() assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' BeBr = B * e * B.rev() assert str(BeBr) == '((X.Y)*(-(X.Y) + 2*(X.e)*(Y.e)))*e' assert str(B * B) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' assert str(L * L) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' (s, c, Binv, M, S, C, alpha, XdotY, Xdote, Ydote) = symbols('s c (1/B) M S C alpha (X.Y) (X.e) (Y.e)') Bhat = Binv * B R = c + s * Bhat assert str(R) == 'c + (1/B)*s*X^Y - (1/B)*(Y.e)*s*X^e + (1/B)*(X.e)*s*Y^e' Z = R * X * R.rev() Z.obj = expand(Z.obj) Z.obj = Z.obj.collect([Binv, s, c, XdotY]) assert str( Z ) == '((1/B)**2*(X.Y)**2*s**2 - 2*(1/B)**2*(X.Y)*(X.e)*(Y.e)*s**2 + 2*(1/B)*(X.Y)*c*s - 2*(1/B)*(X.e)*(Y.e)*c*s + c**2)*X + 2*(1/B)*(X.e)**2*c*s*Y + (2*(1/B)*(X.Y)*(X.e)*s*(-(1/B)*(X.Y)*s + 2*(1/B)*(X.e)*(Y.e)*s - c))*e' W = Z | Y # From this point forward all calculations are with sympy scalars W = W.scalar() assert str( W ) == '(1/B)**2*(X.Y)**3*s**2 - 4*(1/B)**2*(X.Y)**2*(X.e)*(Y.e)*s**2 + 4*(1/B)**2*(X.Y)*(X.e)**2*(Y.e)**2*s**2 + 2*(1/B)*(X.Y)**2*c*s - 4*(1/B)*(X.Y)*(X.e)*(Y.e)*c*s + (X.Y)*c**2' W = expand(W) W = simplify(W) W = W.collect([s * Binv]) M = 1 / Bsq W = W.subs(Binv**2, M) W = simplify(W) Bmag = sqrt(XdotY**2 - 2 * XdotY * Xdote * Ydote) W = W.collect([Binv * c * s, XdotY]) #Double angle substitutions W = W.subs(2 * XdotY**2 - 4 * XdotY * Xdote * Ydote, 2 / (Binv**2)) W = W.subs(2 * c * s, S) W = W.subs(c**2, (C + 1) / 2) W = W.subs(s**2, (C - 1) / 2) W = simplify(W) W = W.subs(1 / Binv, Bmag) W = expand(W) assert str( W ) == '(X.Y)*C - (X.e)*(Y.e)*C + (X.e)*(Y.e) + S*sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd = collect(W, [C, S], exact=True, evaluate=False) Wd_1 = Wd[ONE] Wd_C = Wd[C] Wd_S = Wd[S] assert str(Wd_1) == '(X.e)*(Y.e)' assert str(Wd_C) == '(X.Y) - (X.e)*(Y.e)' assert str(Wd_S) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' assert str(Bmag) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd_1 = Wd_1.subs(Bmag, 1 / Binv) Wd_C = Wd_C.subs(Bmag, 1 / Binv) Wd_S = Wd_S.subs(Bmag, 1 / Binv) lhs = Wd_1 + Wd_C * C rhs = -Wd_S * S lhs = lhs**2 rhs = rhs**2 W = expand(lhs - rhs) W = expand(W.subs(1 / Binv**2, Bmag**2)) W = expand(W.subs(S**2, C**2 - 1)) W = W.collect([C, C**2], evaluate=False) a = simplify(W[C**2]) b = simplify(W[C]) c = simplify(W[ONE]) assert str(a) == '(X.e)**2*(Y.e)**2' assert str(b) == '2*(X.e)*(Y.e)*((X.Y) - (X.e)*(Y.e))' assert str(c) == '(X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e) + (X.e)**2*(Y.e)**2' x = Symbol('x') C = solve(a * x**2 + b * x + c, x)[0] assert str(expand(simplify(expand(C)))) == '-(X.Y)/((X.e)*(Y.e)) + 1' return