Example #1
0
def sample_trajectory(load_model_path,
                      traj_gen,
                      task_name,
                      sample_stochastic,
                      max_sample_traj=1500):
    assert load_model_path is not None
    U.load_state(load_model_path)
    sample_trajs = []
    for iters_so_far in range(max_sample_traj):
        logger.log("********** Iteration %i ************" % iters_so_far)
        traj = traj_gen.__next__()
        ob, new, ep_ret, ac, rew, ep_len = traj['ob'], traj['new'], traj[
            'ep_ret'], traj['ac'], traj['rew'], traj['ep_len']
        logger.record_tabular("ep_ret", ep_ret)
        logger.record_tabular("ep_len", ep_len)
        logger.record_tabular("immediate reward", np.mean(rew))
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
        traj_data = {"ob": ob, "ac": ac, "rew": rew, "ep_ret": ep_ret}
        sample_trajs.append(traj_data)

    sample_ep_rets = [traj["ep_ret"] for traj in sample_trajs]
    logger.log("Average total return: %f" %
               (sum(sample_ep_rets) / len(sample_ep_rets)))

    pkl.dump(sample_trajs, open(task_name + ".pkl", "wb"))
Example #2
0
def learn(args,
          env,
          policy_func,
          dataset,
          optim_batch_size=128,
          adam_epsilon=1e-5,
          optim_stepsize=3e-4):

    # ============================== INIT FROM ARGS ==================================
    max_iters = args.BC_max_iter
    pretrained = args.pretrained
    ckpt_dir = args.checkpoint_dir
    log_dir = args.log_dir
    task_name = args.task_name

    val_per_iter = int(max_iters / 10)
    pi = policy_func(args, "pi", env)  # Construct network for new policy
    oldpi = policy_func(args, "oldpi", env)
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac - pi.ac))
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic],
                             [loss] + [U.flatgrad(loss, var_list)])

    if not pretrained:
        writer = U.FileWriter(log_dir)
        ep_stats = stats(["Loss"])
    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters + 1))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size,
                                                      'train')
        loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if not pretrained:
            ep_stats.add_all_summary(writer, [loss], iter_so_far)
        if iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            loss, g = lossandgrad(ob_expert, ac_expert, False)
            logger.log("Validation:")
            logger.log("Loss: %f" % loss)
            if not pretrained:
                U.save_state(os.path.join(ckpt_dir, task_name),
                             counter=iter_so_far)
    if pretrained:
        savedir_fname = tempfile.TemporaryDirectory().name
        U.save_state(savedir_fname, max_to_keep=args.max_to_keep)
        return savedir_fname
Example #3
0
def learn(env,
          policy_func,
          dataset,
          pretrained,
          optim_batch_size=128,
          max_iters=1e4,
          adam_epsilon=1e-5,
          optim_stepsize=3e-4,
          ckpt_dir=None,
          log_dir=None,
          task_name=None):
    val_per_iter = int(max_iters / 10)
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac - pi.ac))  #エキスパート行動と方策行動の差の2乗の平均
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic],
                             [loss] + [U.flatgrad(loss, var_list)])
    #状態,行動,確率的方策(bool)を入力,loss(エキスパート行動と方策行動の差の2乗の平均)andその勾配を出力

    if not pretrained:
        writer = U.FileWriter(log_dir)
        ep_stats = stats(["Loss"])
    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size,
                                                      'train')
        loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if not pretrained:
            ep_stats.add_all_summary(writer, [loss], iter_so_far)
        if iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            loss, g = lossandgrad(ob_expert, ac_expert, False)
            logger.log("Validation:")
            logger.log("Loss: %f" % loss)
            if not pretrained:
                U.save_state(os.path.join(ckpt_dir, task_name),
                             counter=iter_so_far)
    if pretrained:
        savedir_fname = tempfile.TemporaryDirectory().name
        U.save_state(savedir_fname, var_list=pi.get_variables())
        return savedir_fname
Example #4
0
def learn(env,
          policy_func,
          dataset,
          pretrained,
          optim_batch_size=128,
          max_iters=1e3,
          adam_epsilon=1e-6,
          optim_stepsize=2e-4,
          ckpt_dir=None,
          log_dir=None,
          task_name=None,
          high_level=False):
    val_per_iter = int(max_iters / 100)
    ob_space = env.observation_space
    ac_space = env.action_space
    start_time = time.time()
    if not high_level:

        pi_low = policy_func("pi_low", ob_space, ac_space.spaces[1])

        # placeholder
        # ob_low = U.get_placeholder_cached(name="ob")
        ob_low = pi_low.ob
        ac_low = pi_low.pdtype.sample_placeholder([None])
        # stochastic_low = U.get_placeholder_cached(name="stochastic")
        stochastic_low = pi_low.stochastic
        loss_low = tf.reduce_mean(tf.square(ac_low - pi_low.ac))
        var_list_low = pi_low.get_trainable_variables()
        adam_low = MpiAdam(var_list_low, epsilon=adam_epsilon)
        lossandgrad_low = U.function([ob_low, ac_low, stochastic_low],
                                     [loss_low] +
                                     [U.flatgrad(loss_low, var_list_low)])

        if not pretrained:
            writer = U.FileWriter(log_dir)
            ep_stats_low = stats(["Loss_low"])
        U.initialize()
        adam_low.sync()
        logger.log("Pretraining with Behavior Cloning Low...")
        for iter_so_far in tqdm(range(int(max_iters))):

            ob_expert, ac_expert = dataset.get_next_batch(
                optim_batch_size, 'train', high_level)
            loss, g = lossandgrad_low(ob_expert, ac_expert, True)
            adam_low.update(g, optim_stepsize)
            if not pretrained:
                ep_stats_low.add_all_summary(writer, [loss], iter_so_far)
            if iter_so_far % val_per_iter == 0:
                ob_expert, ac_expert = dataset.get_next_batch(
                    -1, 'val', high_level)
                loss, g = lossandgrad_low(ob_expert, ac_expert, False)
                logger.log("Validation:")
                logger.log("Loss: %f" % loss)
                if not pretrained:
                    U.save_state(os.path.join(ckpt_dir, task_name),
                                 counter=iter_so_far)

        if pretrained:
            savedir_fname = tempfile.TemporaryDirectory().name
            U.save_state(savedir_fname, var_list=pi_low.get_variables())
            return savedir_fname

    else:
        pi_high = policy_func("pi_high", ob_space,
                              ac_space.spaces[0])  # high -> action_label
        # ob_high = U.get_placeholder_cached(name="ob")
        ob_high = pi_high.ob
        ac_high = pi_high.pdtype.sample_placeholder([None, 1])
        onehot_labels = tf.one_hot(indices=tf.cast(ac_high, tf.int32), depth=3)
        # stochastic_high = U.get_placeholder_cached(name="stochastic")
        stochastic_high = pi_high.stochastic
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
            logits=pi_high.logits, labels=onehot_labels)
        loss_high = tf.reduce_mean(cross_entropy)
        var_list_high = pi_high.get_trainable_variables()
        adam_high = MpiAdam(var_list_high, epsilon=adam_epsilon)
        lossandgrad_high = U.function([ob_high, ac_high, stochastic_high],
                                      [loss_high] +
                                      [U.flatgrad(loss_high, var_list_high)])

        # train high level policy
        if not pretrained:
            writer = U.FileWriter(log_dir)
            # ep_stats_low = stats(["Loss_low"])
            ep_stats_high = stats(["loss_high"])
        U.initialize()
        adam_high.sync()
        logger.log("Pretraining with Behavior Cloning High...")
        for iter_so_far in tqdm(range(int(max_iters))):

            ob_expert, ac_expert = dataset.get_next_batch(
                optim_batch_size, 'train', high_level)
            loss, g = lossandgrad_high(ob_expert, ac_expert, True)
            adam_high.update(g, optim_stepsize)
            if not pretrained:
                ep_stats_high.add_all_summary(writer, [loss], iter_so_far)
            if iter_so_far % val_per_iter == 0:
                ob_expert, ac_expert = dataset.get_next_batch(
                    -1, 'val', high_level)
                loss, g = lossandgrad_high(ob_expert, ac_expert, False)
                logger.log("Validation:")
                logger.log("Loss: %f" % loss)
                if not pretrained:
                    U.save_state(os.path.join(ckpt_dir, task_name),
                                 counter=iter_so_far)
        if pretrained:
            savedir_fname = tempfile.TemporaryDirectory().name
            U.save_state(savedir_fname, var_list=pi_high.get_variables())
            return savedir_fname

    print("--- %s seconds ---" % (time.time() - start_time))
Example #5
0
 def log_info(self):
     logger.log("Total trajectories: %d" % self.num_traj)
     logger.log("Total transitions: %d" % self.num_transition)
     logger.log("Average episode length: %f" % self.avg_len)
     logger.log("Average returns: %f" % self.avg_ret)
Example #6
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        pretrained,
        pretrained_weight,
        *,
        g_step,
        d_step,
        episodes_per_batch,  # what to train on
        dropout_keep_prob,
        sequence_size,  #rnn parameters
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        d_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_per_iter=100,
        ckpt_dir=None,
        log_dir=None,
        load_model_path=None,
        task_name=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n(
        [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    writer = U.FileWriter(log_dir)
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     episodes_per_batch,
                                     stochastic=True,
                                     seq_length=sequence_size)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(discriminator.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())
    # if provieded model path
    if load_model_path is not None:
        U.load_state(load_model_path)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        traj_gen, traj_len_gen = seg["ep_trajs"], seg["ep_lens"]
        #traj_expert, traj_len_expert = expert_dataset.get_next_traj_batch()
        batch_size = len(traj_gen) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for traj_batch, traj_len_batch in dataset.iterbatches(
            (traj_gen, traj_len_gen),
                include_final_partial_batch=False,
                batch_size=batch_size):
            traj_expert, traj_len_expert = expert_dataset.get_next_traj_batch(
                len(traj_batch))
            # update running mean/std for discriminator
            ob_batch, _ = traj2trans(traj_batch, traj_len_batch,
                                     ob_space.shape[0])
            ob_expert, _ = traj2trans(traj_expert, traj_len_expert,
                                      ob_space.shape[0])
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(traj_batch,
                                                      traj_len_batch,
                                                      traj_expert,
                                                      traj_len_expert,
                                                      dropout_keep_prob)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
            g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                         iters_so_far)
            ep_stats.add_all_summary(writer, [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer)
            ], iters_so_far)
Example #7
0
def learn(
        env,
        policy_func,
        *,
        timesteps_per_batch,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    print("max_timrsteps", max_timesteps)
    print("max_episodes", max_episodes)
    print("max_iters", max_iters)
    print("max_seconds", max_seconds)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration : r_t(\theta)*A_t
    surr2 = U.clip(ratio, 1.0 - clip_param,
                   1.0 + clip_param) * atarg  #更新則のCLIP項
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP) 目的関数
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                    shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                #更新部
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult)
                #ADAMでgをアップデート
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

        logger.log("Evaluating losses...")
        losses = []
        for batch in d.iterate_once(optim_batchsize):
            newlosses = compute_losses(batch["ob"], batch["ac"],
                                       batch["atarg"], batch["vtarg"],
                                       cur_lrmult)
            losses.append(newlosses)
        meanlosses, _, _ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        print("... EpisodesSoFar ", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        print("... TimestepsSoFar ", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        print("... TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
Example #8
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        pretrained,
        pretrained_weight,
        *,
        g_step,
        d_step,
        timesteps_per_batch,  # what to train on
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.001,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        d_stepsize=1.5e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,
        save_per_iter=100,
        ckpt_dir=None,
        log_dir=None,
        load_model_path=None,
        task_name=None,
        timesteps_per_actorbatch=16,
        clip_param=1e-5,
        adam_epsilon=4e-4,
        optim_epochs=1,
        optim_stepsize=4e-4,
        optim_batchsize=16,
        schedule='linear'):
    nworkers = MPI.COMM_WORLD.Get_size()
    print("##### nworkers: ", nworkers)
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    # ob_space = np.array([5*64*64 + 10*64*64 + 11 + 524]) # env.observation_space
    # ac_space = np.array([1]) #env.action_space
    from gym import spaces
    ob_space = spaces.Box(low=-1000,
                          high=10000,
                          shape=(5 * 64 * 64 + 10 * 64 * 64 + 11 + 524, ))
    ac_space = spaces.Discrete(524)
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    # ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=(None, ob_space[0]))
    ac = pi.pdtype.sample_placeholder([None])
    # prevac = pi.pdtype.sample_placeholder([None])
    prevac_placeholder = U.get_placeholder_cached(name="last_action_one_hot")

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    # ent = pi.pd.entropy_usual() # see how it works, the value is the same
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    # entbonus = entcoeff * meanent
    # entcoeff = entcoeff * lrmult + 1e-5
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param,
                             1.0 + clip_param) * atarg  #
    pol_surr = -tf.reduce_mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, prevac_placeholder, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    g_adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function(
        [ob, ac, prevac_placeholder, atarg, ret, lrmult], losses)

    # all_var_list = pi.get_trainable_variables()
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    # vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    writer = U.FileWriter(log_dir)
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    g_adam.sync()
    d_adam.sync()
    # vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     timesteps_per_batch,
                                     expert_dataset,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=100)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(discriminator.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # # if provide pretrained weight
    # if pretrained_weight is not None:
    #     U.load_state(pretrained_weight, var_list=pi.get_variables())
    # # if provieded model path
    # if load_model_path is not None:
    #     U.load_state(load_model_path)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(
                1.0 - float(timesteps_so_far) / (max_timesteps + 1e7),
                0.1)  # make the smallest number as 0.1 instead of 0
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        # def fisher_vector_product(p):
        #     return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
        # # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        meanlosses = []
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, prevac, atarg, tdlamret = seg["ob"], seg["ac"], seg[
                "prevac"], seg["adv"], seg["tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            # print("before standardize atarg value: ", atarg)
            if atarg.std() != 0:
                atarg = (atarg - atarg.mean()) / atarg.std(
                )  # standardized advantage function estimate
            else:
                with open("debug.txt", "a+") as f:
                    print("atarg.std() is equal to 0", atarg, file=f)
            # print("atarg value: ", atarg)

            # convert prevac to one hot
            one_hot_prevac = []
            if type(prevac) is np.ndarray:
                depth = prevac.size
                one_hot_prevac = np.zeros((depth, 524))
                one_hot_prevac[np.arange(depth), prevac] = 1
            else:
                one_hot_prevac = np.zeros(524)
                one_hot_prevac[prevac] = 1
                one_hot_prevac = [one_hot_prevac]
            prevac = one_hot_prevac

            d = Dataset(dict(ob=ob,
                             ac=ac,
                             prevac=prevac,
                             atarg=atarg,
                             vtarg=tdlamret),
                        shuffle=not pi.recurrent)
            optim_batchsize = optim_batchsize or ob.shape[0]
            # print("optim_batchsize: ", optim_batchsize)

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            logger.log(fmt_row(13, loss_names))
            for _ in range(optim_epochs):
                losses = [
                ]  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize):
                    *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                                batch['prevac'],
                                                batch["atarg"], batch["vtarg"],
                                                cur_lrmult)
                    g_adam.update(g, optim_stepsize * cur_lrmult)  # allmean(g)

                    x_newlosses = compute_losses(batch["ob"], batch["ac"],
                                                 batch["prevac"],
                                                 batch["atarg"],
                                                 batch["vtarg"], cur_lrmult)
                    meanlosses = [x_newlosses]
                    losses.append(x_newlosses)
                logger.log(fmt_row(13, np.mean(losses, axis=0)))
                # meanlosses = losses

        # # logger.log("Evaluating losses...")
        # losses = []
        # for batch in d.iterate_once(optim_batchsize):
        #     newlosses = compute_losses(batch["ob"], batch["ac"], batch["prevac"],
        #         batch["atarg"], batch["vtarg"], cur_lrmult)
        #     losses.append(newlosses)
        # # # meanlosses,_,_ = mpi_moments(losses, axis=0) # it will be useful for multithreading
        meanlosses = np.mean(losses, axis=0)
        # logger.log(fmt_row(13, meanlosses))
        g_losses = meanlosses
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        global UP_TO_STEP
        ob_expert, ac_expert, prevac_expert = expert_dataset.get_next_batch(
            len(ob), UP_TO_STEP)
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch, prevac_batch in dataset.iterbatches(
            (ob, ac, prevac),
                include_final_partial_batch=False,
                batch_size=batch_size):
            # print("###### len(ob_batch): ", len(ob_batch))
            ob_expert, ac_expert, prevac_expert = expert_dataset.get_next_batch(
                len(ob_batch), UP_TO_STEP)
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))

            depth = len(ac_batch)
            one_hot_ac_batch = np.zeros((depth, 524))
            one_hot_ac_batch[np.arange(depth), ac_batch] = 1

            # depth = len(prevac_batch)
            # one_hot_prevac_batch = np.zeros((depth, 524))
            # one_hot_prevac_batch[np.arange(depth), prevac_batch] = 1

            depth = len(ac_expert)
            one_hot_ac_expert = np.zeros((depth, 524))
            one_hot_ac_expert[np.arange(depth), ac_expert] = 1

            depth = len(prevac_expert)
            one_hot_prevac_expert = np.zeros((depth, 524))
            one_hot_prevac_expert[np.arange(depth), prevac_expert] = 1

            *newlosses, g = discriminator.lossandgrad(ob_batch,
                                                      one_hot_ac_batch,
                                                      prevac_batch, ob_expert,
                                                      one_hot_ac_expert,
                                                      one_hot_prevac_expert)
            global LAST_EXPERT_ACC, LAST_EXPERT_LOSS
            LAST_EXPERT_ACC = newlosses[5]
            LAST_EXPERT_LOSS = newlosses[1]
            d_adam.update(g, d_stepsize)  # allmean(g)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        # logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far = len(lens)
        timesteps_so_far = sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
            g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                         iters_so_far)
            ep_stats.add_all_summary(writer, [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer)
            ], iters_so_far)

        global ITER_SOFAR_GLOBAL
        ITER_SOFAR_GLOBAL = iters_so_far

        # log ac picked
        with open('ac.txt', 'a+') as fh:
            print(ac, file=fh)