Example #1
0
def generate(config, model_file, output_file):
    model = load_model(model_file)
    with open(output_file, 'ab') as fout:
        file_pos = fout.tell()
        # Truncate any partially written record
        fout.seek(file_pos - file_pos % record_size(config.size))
        samples = 0
        start_time = time.time()
        game_boards = numpy.array(
            [new_board(config.size) for i in range(config.batch_size)])
        game_moves = [[] for i in range(config.batch_size)]
        while True:
            _values, priors = model.predict(game_boards)
            priors = numpy.reshape(priors, (-1, config.size, config.size))
            for i in range(config.batch_size):
                probs = fix_probabilities(game_boards[i], priors[i])
                move = sample_move(probs)
                game_moves[i].append(move)
                game_boards[i] = make_move(game_boards[i], move)
                if winner(game_boards[i]):
                    samples += 1
                    board, won, visits = game_result(config, model,
                                                     game_moves[i])
                    write_record(fout, board, won, visits)
                    fout.flush()
                    print_board(board, file=sys.stderr)
                    print('Games: %d, Time per game: %.2fs' %
                          (samples, (time.time() - start_time) / samples),
                          file=sys.stderr)
                    game_boards[i] = new_board(config.size)
                    game_moves[i] = []
Example #2
0
def play():
    cur_player = input('Would you like to be X or O: ').upper()
    main_board = game.new_board()

    while True:
        game.print_board(main_board)
        move_str = input(
            'Where would you like to place an %s? (e.g. 12 for 1st row, 2nd column) '
            % cur_player)
        move_row = int(move_str[0]) - 1
        move_col = int(move_str[1]) - 1
        main_board = game.make_move(main_board, move_row, move_col, cur_player)
        if game.any_win(main_board, cur_player):
            game.print_board(main_board)
            print(
                'Congratulations Player %s! Better luck next time player %s' %
                (cur_player, game.other_player(cur_player)))
            break
        elif game.board_full(main_board):
            game.print_board(main_board)
            print('No more moves possible. The game ended in a draw.')
            break
        cur_player = game.other_player(cur_player)

    if input('Would you like to play again? [y/n]') == 'y':
        play()
    else:
        print('Thanks for playing.')
        return 0
Example #3
0
def compare(config, model_file1, model_file2):
    models = [load_model(model_file1), load_model(model_file2)]
    games = 0
    first_player_wins = 0
    win_ratio, uncertainty = None, None
    while True:
        move_index = 0
        predictors = [TreeSearchPredictor(config.search_config, model, new_board(config.size), True) for model in models]
        while not winner(predictors[0].board):
            if move_index == 0:
                predictor = predictors[1]
            else:
                predictor = predictors[(games ^ move_index) & 1]
            predictor.run(config.iterations)
            value, probabilities = predictor.predict()
            if move_index < 3:
                move = sample_move(probabilities)
            else:
                move = best_move(probabilities)
            for predictor in predictors:
                predictor.make_move(move)
            if games & 1 == move_index & 1:
                print_board(flip(predictors[0].board), move, file=sys.stderr)
            else:
                print_board(predictors[0].board, flip_move(move), file=sys.stderr)
            print('%s model win probability: %.2f' % (['First', 'Second'][((games ^ move_index) & 1)], (value + 1) / 2), file=sys.stderr)
            if games > 0:
                print('Win ratio %.2f ± %.2f (%d games)' % (win_ratio, uncertainty, games), file=sys.stderr)
            move_index += 1
        games += 1
        if games & 1 == move_index & 1:
            first_player_wins += 1
        win_ratio = float(first_player_wins) / games
        uncertainty = win_ratio * math.sqrt(win_ratio * (1 - win_ratio) / games)
Example #4
0
def game_result(config, model, moves):
    last_move_index = len(moves) - 1
    end = random.randint(0, last_move_index)
    board = new_board(config.size)
    for move in moves[:end]:
        board = make_move(board, move)
    predictor = TreeSearchPredictor(config.search_config, model, board,
                                    end == 0)
    predictor.run(config.iterations)
    return board, last_move_index % 2 == end % 2, predictor.visits()
Example #5
0
def read_record(f, size):
    record = f.read(record_size(size))
    board = new_board(size)
    visits = numpy.zeros((size, size))
    offset = 0
    for x in range(size):
        for y in range(size):
            cell = short.unpack_from(record, offset)[0]
            offset += short.size
            board[0, x, y] = (cell >> 6) & 1
            board[1, x, y] = (cell >> 7) & 1
            visits[x, y] = cell & ((1 << 6) - 1)
    won = boolean.unpack_from(record, offset)[0]
    return board, won, visits
Example #6
0
    def simulate(self, n):
        if n == 0: yield 0, 0, 0
        won = 0
        lost = 0

        for i in range(n):
            board = game.new_board()

            moves_deep = 0
            while True:
                board = self.actor(board)
                moves_deep += 1
                game.add_cell(board)

                if game.is_board_won(board):
                    yield 1, 0, moves_deep
                    break

                if game.is_board_lost(board):
                    yield 0, 1, moves_deep
                    break
Example #7
0
 def clear_board(self):
     self.board = new_board(self.config.size)
     self.history = []
     return ''
Example #8
0
def compare(config, model_file1, model_file2, temp, num_games):
    models = [load_model(model_file1), load_model(model_file2)]
    games = 0
    first_player_wins = 0
    win_ratio, uncertainty = None, None

    ratios = []
    # while True:
    for i in range(num_games):
        move_index = 0
        predictors = [
            TreeSearchPredictor(config.search_config, model,
                                new_board(config.size), True)
            for model in models
        ]

        # exp uct of model2 is 100
        # predictors = ["avshalom", "shlomo"]
        # config.search_config.uct_factor = 5.0
        # predictors[0] = TreeSearchPredictor(config.search_config, models[0], new_board(config.size), True)
        # config.search_config.uct_factor = 100.0
        # predictors[1] = TreeSearchPredictor(config.search_config, models[1], new_board(config.size), True)

        # exp uct of model2 is 100
        # predictors = ["avshalom", "shlomo"]
        # config.search_config.uct_factor = 5.0
        # predictors[0] = TreeSearchPredictor(config.search_config, models[0], new_board(config.size), True)
        # config.search_config.uct_factor = 100.0
        # predictors[1] = TreeSearchPredictor(config.search_config, models[1], new_board(config.size), True)

        # exp virtual loss of model2 is 100
        # predictors = ["avshalom", "shlomo"]
        # config.search_config.virtual_loss = 3.0
        # predictors[0] = TreeSearchPredictor(config.search_config, models[0], new_board(config.size), True)
        # config.search_config.virtual_loss = 100.0
        # predictors[1] = TreeSearchPredictor(config.search_config, models[1], new_board(config.size), True)

        # exp virtual loss of model2 is 0
        # predictors = ["avshalom", "shlomo"]
        # config.search_config.virtual_loss = 3.0
        # predictors[0] = TreeSearchPredictor(config.search_config, models[0], new_board(config.size), True)
        # config.search_config.virtual_loss = 0
        # predictors[1] = TreeSearchPredictor(config.search_config, models[1], new_board(config.size), True)

        while not winner(predictors[0].board):
            if move_index == 0:
                predictor = predictors[1]
            else:
                predictor = predictors[(games ^ move_index) & 1]
            predictor.run(config.iterations)
            value, probabilities = predictor.predict()

            # exp uniform probs
            #uprobs = [0.00826446] * 121
            #if games & 1 == move_index & 1:
            #   probabilities = np.array(uprobs).reshape(11, -1)

            # exp temperature
            tprobs = temperature(probabilities, temp)
            if games & 1 == move_index & 1:
                probabilities = tprobs
                #print(probabilities)

            if move_index < 3:
                move = sample_move(probabilities)
            else:
                #move = best_move(probabilities)
                move = sample_move(probabilities)
            for predictor in predictors:
                predictor.make_move(move)
            if games & 1 == move_index & 1:
                print_board(flip(predictors[0].board), move, file=sys.stderr)
            else:
                print_board(predictors[0].board,
                            flip_move(move),
                            file=sys.stderr)
            print('%s model win probability: %.2f' %
                  (['First', 'Second'][((games ^ move_index) & 1)],
                   (value + 1) / 2),
                  file=sys.stderr)
            if games > 0:
                print('Win ratio %.2f ± %.2f (%d games)' %
                      (win_ratio, uncertainty, games),
                      file=sys.stderr)
            move_index += 1
        games += 1
        if games & 1 == move_index & 1:
            first_player_wins += 1
        win_ratio = float(first_player_wins) / games
        uncertainty = win_ratio * math.sqrt(win_ratio *
                                            (1 - win_ratio) / games)

        ratios.append(win_ratio)

    return ratios