def _get_parameters(self): """ Get parameters from parfile """ # If there are no observations in container then get some ... if self.obs().is_empty(): self.obs(self._get_observations()) # ... otherwise add response information and energy boundaries # in case they are missing else: self._setup_observations(self.obs()) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Get number of energy bins enumbins = self['enumbins'].integer() # Query parameters for On/Off observation if gammalib.toupper(self['onsrc'].string()) != 'NONE': self['onrad'].real() # Query parameters for binned if requested elif enumbins > 0: self['npix'].integer() self['binsz'].real() self['coordsys'].string() self['proj'].string() # Set models if we have none if self.obs().models().is_empty(): self.obs().models(self['inmodel'].filename()) # Query other parameters self['ntrials'].integer() self['edisp'].boolean() self['seed'].integer() self['chatter'].integer() # Query some parameters self['outfile'].filename() self['profile'].boolean() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Query datapath. If the parameter is not NONE then use it, otherwise # use the datapath from the VHEFITS environment variable datapath = self['datapath'].string() if gammalib.toupper(datapath) != 'NONE': self._datapath = datapath else: self._datapath = os.getenv('VHEFITS', '') # Expand environment self._datapath = gammalib.expand_env(self._datapath) # Get filename of master index file self._master_indx = self['master_indx'].string() self._master_file = os.path.join(self._datapath, self._master_indx) # Check for presence of master index file if not os.path.isfile(self._master_file): raise RuntimeError('Master index file "' + self._master_file + '" not found. Use hidden parameter ' + '"master_indx" to specifiy a different ' + 'filename.') # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Set observation if not done before if self.obs().size() == 0: self.obs(self._get_observations()) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Get source name self._srcname = self['srcname'].string() # Set models if we have none if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Query parameters self['edisp'].boolean() self['ntrials'].integer() self['debug'].boolean() self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Set number of processes for multiprocessing self._nthreads = mputils.nthreads(self) # Return return
def check_set_obs_statistic_onoff(self, statistic): obs = gammalib.GObservations() cta = gammalib.GCTAOnOffObservation() obs.append(cta) self.obs(obs) self._set_obs_statistic(statistic) return gammalib.toupper(self.obs()[0].statistic())
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Set observation if not done before if self.obs().size() == 0: self.obs(self._get_observations()) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Get source name self._srcname = self['srcname'].string() # Set models if we have none if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Query parameters self['edisp'].boolean() self['ntrials'].integer() self['debug'].boolean() # Read ahead output parameters #if self._read_ahead(): # self['outfile'].filename() self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def check_set_obs_statistic_binned(self, statistic): obs = gammalib.GObservations() cube = gammalib.GCTAEventCube() cta = gammalib.GCTAObservation() cta.events(cube) obs.append(cta) self.obs(obs) self._set_obs_statistic(statistic) return gammalib.toupper(self.obs()[0].statistic())
def _get_parameters(self): """ Get user parameters from parfile """ # Set observation if not done before if self.obs().size() == 0: self.obs(self._set_obs(self['emin'].real(), self['emax'].real())) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if we have none if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Get source name self._srcname = self['srcname'].string() # Read further parameters emin = self['emin'].real() emax = self['emax'].real() bins = self['bins'].integer() # Query parameters for binned if requested enumbins = self['enumbins'].integer() if not enumbins == 0: self['npix'].integer() self['binsz'].real() # Query input parameters self['sigma'].real() self['max_iter'].integer() self['type'].string() self['outfile'].filename() self['edisp'].boolean() self['debug'].boolean() # Derive some parameters self._ebounds = gammalib.GEbounds(bins, gammalib.GEnergy(emin, 'TeV'), gammalib.GEnergy(emax, 'TeV')) # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Set number of processes for multiprocessing self._nthreads = mputils.nthreads(self) # Return return
def _get_parameters(self): """ Get user parameters from parfile """ # Set observation if not done before if self.obs().size() == 0: self.obs(self._set_obs(self['emin'].real(), self['emax'].real())) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if we have none if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Get source name self._srcname = self['srcname'].string() # Read further parameters emin = self['emin'].real() emax = self['emax'].real() bins = self['bins'].integer() # Query parameters for binned if requested enumbins = self['enumbins'].integer() if not enumbins == 0: self['npix'].integer() self['binsz'].real() # Query input parameters self['sigma'].real() self['max_iter'].integer() self['type'].string() self['outfile'].filename() self['edisp'].boolean() self['debug'].boolean() # Derive some parameters self._ebounds = gammalib.GEbounds(bins, gammalib.GEnergy(emin, 'TeV'), gammalib.GEnergy(emax, 'TeV')) # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters from parfile """ # Setup observations (require response and allow event list, don't # allow counts cube) self._setup_observations(self.obs(), True, True, False) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if there are none in the container if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Get phase boundaries self._phbins = self._create_tbounds() # Set On/Off analysis flag and query relevant user parameters self._onoff = self._is_onoff() # Get source name self._srcname = self['srcname'].string() # If cube analysis is selected # Set stacked analysis flag and query relevant user parameters if not self._onoff: self._stacked = self._is_stacked() # Query the hidden parameters, just in case self['edisp'].boolean() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Set number of processes for multiprocessing self._nthreads = mputils.nthreads(self) # Return return
def _get_parameters(self): """ Get parameters from parfile """ # Setup observations (require response and allow event list, don't # allow counts cube) self._setup_observations(self.obs(), True, True, False) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if there are none in the container if self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Get source name self._srcname = self['srcname'].string() # Get time boundaries self._tbins = self._create_tbounds() # Set On/Off analysis flag and query relevant user parameters self._onoff = self._is_onoff() # Set stacked analysis flag and query relevant user parameters if not self._onoff: self._stacked = self._is_stacked() # Query the hidden parameters, just in case self['edisp'].boolean() self['calc_ulim'].boolean() self['calc_ts'].boolean() self['fix_bkg'].boolean() self['fix_srcs'].boolean() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Set observation if not done before if self.obs().is_empty(): self._require_inobs('csspec::get_parameters()') self.obs(self._get_observations()) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if we have none if self.obs().models().is_empty(): self.obs().models(self['inmodel'].filename()) # Query source name self['srcname'].string() # Get spectrum generation method self._method = self['method'].string() # Collect number of unbinned, binned and On/Off observations in # observation container n_unbinned = 0 n_binned = 0 n_onoff = 0 for obs in self.obs(): if obs.classname() == 'GCTAObservation': if obs.eventtype() == 'CountsCube': n_binned += 1 else: n_unbinned += 1 elif obs.classname() == 'GCTAOnOffObservation': n_onoff += 1 n_cta = n_unbinned + n_binned + n_onoff n_other = self.obs().size() - n_cta # If spectrum method is not "NODES" then set spectrum method and # script mode according to type of observations if self._method != 'NODES': if n_other > 0: self._method = 'NODES' else: if n_unbinned == 0 and n_binned != 0 and n_onoff == 0: self._binned_mode = True self._method = 'SLICE' elif n_unbinned == 0 and n_binned == 0 and n_onoff != 0: self._onoff_mode = True self._method = 'SLICE' elif n_unbinned == 0 and n_binned != 0 and n_onoff != 0: msg = 'Mix of binned and On/Off CTA observations found ' \ 'in observation container. csscript does not support ' \ 'this mix.' raise RuntimeError(msg) elif n_unbinned != 0 and (n_binned != 0 or n_onoff != 0): msg = 'Mix of unbinned and binned or On/Off CTA observations ' \ 'found in observation container. csscript does not ' \ 'support this mix.' raise RuntimeError(msg) elif n_unbinned != 0: self._method = 'SLICE' # Set ebounds self._set_ebounds() # Query other parameeters self['edisp'].boolean() self['calc_ulim'].boolean() self['calc_ts'].boolean() self['fix_bkg'].boolean() self['fix_srcs'].boolean() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Set number of processes for multiprocessing self._nthreads = mputils.nthreads(self) # Write spectrum method header and parameters self._log_header1(gammalib.TERSE, 'Spectrum method') self._log_value(gammalib.TERSE, 'Unbinned CTA observations', n_unbinned) self._log_value(gammalib.TERSE, 'Binned CTA observations', n_binned) self._log_value(gammalib.TERSE, 'On/off CTA observations', n_onoff) self._log_value(gammalib.TERSE, 'Other observations', n_other) # If there are a mix of CTA and non-CTA observations and the method # is 'SLICE' then log a warning that non-CTA observations will be # ignored warning = False if n_cta > 0 and n_other > 0 and self._method == 'SLICE': warning = True # If there are only non-CTA observations and the method is 'SLICE' # then stop now elif n_other > 0: if self._method == 'SLICE': msg = 'Selected "SLICE" method but none of the observations ' \ 'is a CTA observation. Please select "AUTO" or "NODES" ' \ 'if no CTA observation is provided.' raise RuntimeError(msg) else: self._method = 'NODES' # Log selected spectrum method self._log_value(gammalib.TERSE, 'Selected spectrum method', self._method) # Signal warning if warning: self._log_string( gammalib.TERSE, ' WARNING: Only CTA observation ' 'can be handled with the "SLICE" method, all ' 'non-CTA observation will be ignored.') # Return return
def plot_irf(irf, emin, emax, tmin, tmax, plotfile): """ Plot Instrument Response Function Parameters ---------- irf : `~gammalib.GCTAResponseIrf` Instrument Response Function emin : float Minimum energy (TeV) emax : float Maximum energy (TeV) tmin : float Minimum offset angle (deg) tmax : float Maximum offset angle (deg) plotfile : str Plot filename """ # Build selection string selection = '' eselection = '' tselection = '' if emin != None and emax != None: eselection += '%.3f-%.1f TeV' % (emin, emax) elif emin != None: eselection += ' >%.3f TeV' % (emin) elif emax != None: eselection += ' <%.1f TeV' % (emax) if tmin != None and tmax != None: tselection += '%.1f-%.1f deg' % (tmin, tmax) elif tmin != None: tselection += ' >%.1f deg' % (tmin) elif tmax != None: tselection += ' <%.1f deg' % (tmax) if len(eselection) > 0 and len(tselection) > 0: selection = ' (%s, %s)' % (eselection, tselection) elif len(eselection) > 0: selection = ' (%s)' % (eselection) elif len(tselection) > 0: selection = ' (%s)' % (tselection) # Build title mission = irf.caldb().mission() instrument = irf.caldb().instrument() response = irf.rspname() title = '%s "%s" Instrument Response Function "%s"%s' % \ (gammalib.toupper(mission), instrument, response, selection) # Create figure fig = plt.figure(figsize=(16,8)) # Add title fig.suptitle(title, fontsize=16) # Plot Aeff ax1 = fig.add_subplot(231) plot_aeff(ax1, irf.aeff(), emin=emin, emax=emax, tmin=tmin, tmax=tmax) # Plot Psf ax2 = fig.add_subplot(232) plot_psf(ax2, irf.psf(), emin=emin, emax=emax, tmin=tmin, tmax=tmax) # Plot Background ax3 = fig.add_subplot(233) plot_bkg(ax3, irf.background(), emin=emin, emax=emax, tmin=tmin, tmax=tmax) # Plot Edisp fig.add_subplot(234) plot_edisp(irf.edisp(), emin=emin, emax=emax, tmin=tmin, tmax=tmax) # Show plots or save it into file if len(plotfile) > 0: plt.savefig(plotfile) else: plt.show() # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Query datapath. If the parameter is not NONE then use it, otherwise # use the datapath from the VHEFITS environment variable datapath = self['datapath'].string() if gammalib.toupper(datapath) != 'NONE': self._datapath = datapath else: self._datapath = os.getenv('VHEFITS', '') # Expand environment self._datapath = gammalib.expand_env(self._datapath) # Query input parameters self['inmodel'].query() # Read FITS production self._prodname = self['prodname'].string() # Read runlist file if list not already filled if len(self._runlist) == 0: # Get file name self._runlistfile = self['infile'].filename() # Read runlist from file runfile = open(self._runlistfile.url()) for line in runfile.readlines(): if len(line) == 0: continue if line[0] == '#': continue if len(line.split()) > 0: self._runlist.append(line.split()[0]) runfile.close() # Read number of background parameters self._bkgpars = self['bkgpars'].integer() # Query ahead output parameters if self._read_ahead(): self['outmodel'].filename() self['outobs'].filename() # Master index file name self._master_indx = self['master_indx'].string() # Read flag for background scaling factor self._use_bkg_scale = self['bkg_scale'].boolean() # Read hierarchy of file loading self._ev_hiera = self['ev_hiera'].string().split('|') self._aeff_hiera = self['aeff_hiera'].string().split('|') self._psf_hiera = self['psf_hiera'].string().split('|') self._bkg_hiera = self['bkg_hiera'].string().split('|') self._edisp_hiera = self['edisp_hiera'].string().split('|') self._bkg_mod_hiera = self['bkg_mod_hiera'].string().split('|') # Read hidden background parameters self._bkg_gauss_norm = self['bkg_gauss_norm'].real() self._bkg_gauss_index = self['bkg_gauss_index'].real() self._bkg_gauss_sigma = self['bkg_gauss_sigma'].real() self._bkg_aeff_index = self['bkg_aeff_index'].real() self._bkg_aeff_norm = self['bkg_aeff_norm'].real() self._bkg_range_factor = self['bkg_range_factor'].real() # Open master index file and look for prodname master_file = os.path.join(self._datapath, self._master_indx) if not os.path.isfile(master_file): raise RuntimeError('FITS data store not available. No master ' 'index file found. Make sure the file is ' 'copied from the server and your datapath ' 'is set correctly.') # Open and load JSON file json_data = open(master_file).read() data = json.loads(json_data) if not 'datasets' in data: raise RuntimeError('Key "datasets" not available in master ' 'index file.') # Get configurations configs = data['datasets'] # Initialise HDUs self._hdu_index = self._obs_index = '' # Get HDUs for config in configs: # Check if prodname is present if self._prodname == config['name']: self._hdu_index = str( os.path.join(self._datapath, config['hduindx'])) self._obs_index = str( os.path.join(self._datapath, config['obsindx'])) # Leave loop if index file names were found break # Check index files if self._hdu_index == '' or self._obs_index == '': raise RuntimeError('*** ERROR: FITS data store "' + self._prodname + '" not available. Run csiactdata to get a list ' 'of available storage names') # Check HDU names filename = gammalib.GFilename(self._hdu_index + '[HDU_INDEX]') if not filename.is_fits(): raise RuntimeError('*** ERROR: HDU index file "' + self._hdu_index + '[HDU_INDEX]" for FITS data store "' + self._prodname + '" not available. Check your ' 'master index file or run csiactdata to get ' 'a list of available storage names.') # Check for existence of 'BKG_SCALE' in the observation index file if # required if self._use_bkg_scale: # Create filename filename = gammalib.GFilename(self._obs_index + '[OBS_INDEX]') # Check if it is a FITS file if filename.is_fits(): # Open FITS file fits = gammalib.GFits(self._obs_index) # Check if column "BKG_SCALE" is found and signal its possible # usage if not fits['OBS_INDEX'].contains('BKG_SCALE'): self._use_bkg_scale = False # Close FITS file fits.close() else: # Signal that there is no background scale self._use_bkg_scale = False # Create base data directory from hdu index file location self._subdir = os.path.dirname(self._hdu_index) self._debug = False # Debugging in client tools # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters and setup the observation """ # Set observation if not done before if self.obs().is_empty(): self._require_inobs('csdmatter::get_parameters') self.obs(self._get_observations()) # Set Obs statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set Models if self.obs().models().is_empty(): self.obs().models(self['inmodel'].filename()) # Query source name self['srcname'].string() # Collect number of unbinned, binned and OnOff obs # in observation container n_unbinned = 0 n_binned = 0 n_onoff = 0 for obs in self.obs(): if obs.classname() == 'GCTAObservation': if obs.eventtype() == 'CountsCube': n_binned += 1 else: n_unbinned += 1 elif obs.classname() == 'GCTAOnOffObservation': n_onoff += 1 n_cta = n_unbinned + n_binned + n_onoff n_other = self.obs().size() - n_cta # Set energy bounds self._set_ebounds() # Query other parameters self['edisp'].boolean() self['calc_ulim'].boolean() self['calc_ts'].boolean() self['fix_bkg'].boolean() self['fix_srcs'].boolean() # self[ 'dmass' ].real() # self[ 'sigmav' ].real() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write into logger self._log_parameters(gammalib.TERSE) # Set number of processes for multiprocessing self._nthreads = mputils.nthreads(self) self._log_header1(gammalib.TERSE, 'DM analysis') self._log_value(gammalib.TERSE, 'Unbinned observations', n_unbinned) self._log_value(gammalib.TERSE, 'Binned observations', n_binned) self._log_value(gammalib.TERSE, 'OnOff Observations', n_onoff) self._log_value(gammalib.TERSE, 'NonCTA Observations', n_other) if n_other == 0: if n_unbinned == 0 and n_binned != 0 and n_onoff == 0: self._binned_mode = True elif n_unbinned == 0 and n_binned == 0 and n_onoff != 0: self._onoff_mode = True elif n_unbinned == 0 and n_binned != 0 and n_onoff != 0: msg = 'Mixing of binned and OnOff Observations' raise RuntimeError(msg) elif n_unbinned != 0 and (n_binned != 0 or n_onoff != 0): msg = 'Mixing of different CTA Observations' raise RuntimeError(msg) else: msg = 'csdmatter only supports CTA-observations' raise RuntimeError(msg) return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Set observation if not done before if self.obs().is_empty(): self._require_inobs('csspec::get_parameters()') self.obs(self._get_observations()) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Set models if we have none if self.obs().models().is_empty(): self.obs().models(self['inmodel'].filename()) # Query source name self['srcname'].string() # Get spectrum generation method self._method = self['method'].string() # Collect number of unbinned, binned and On/Off observations in # observation container n_unbinned = 0 n_binned = 0 n_onoff = 0 for obs in self.obs(): if obs.classname() == 'GCTAObservation': if obs.eventtype() == 'CountsCube': n_binned += 1 else: n_unbinned += 1 elif obs.classname() == 'GCTAOnOffObservation': n_onoff += 1 n_cta = n_unbinned + n_binned + n_onoff n_other = self.obs().size() - n_cta # If spectrum method is not "NODES" then set spectrum method and # script mode according to type of observations if self._method != 'NODES': if n_other > 0: self._method = 'NODES' else: if n_unbinned == 0 and n_binned != 0 and n_onoff == 0: self._binned_mode = True self._method = 'SLICE' elif n_unbinned == 0 and n_binned == 0 and n_onoff != 0: self._onoff_mode = True self._method = 'SLICE' elif n_unbinned == 0 and n_binned != 0 and n_onoff != 0: msg = 'Mix of binned and On/Off CTA observations found ' \ 'in observation container. csscript does not support ' \ 'this mix.' raise RuntimeError(msg) elif n_unbinned != 0 and (n_binned != 0 or n_onoff != 0): msg = 'Mix of unbinned and binned or On/Off CTA observations ' \ 'found in observation container. csscript does not ' \ 'support this mix.' raise RuntimeError(msg) elif n_unbinned != 0: self._method = 'SLICE' # Set ebounds self._set_ebounds() # Query other parameeters self['edisp'].boolean() self['calc_ulim'].boolean() self['calc_ts'].boolean() self['fix_bkg'].boolean() self['fix_srcs'].boolean() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Write spectrum method header and parameters self._log_header1(gammalib.TERSE, 'Spectrum method') self._log_value(gammalib.TERSE, 'Unbinned CTA observations', n_unbinned) self._log_value(gammalib.TERSE, 'Binned CTA observations', n_binned) self._log_value(gammalib.TERSE, 'On/off CTA observations', n_onoff) self._log_value(gammalib.TERSE, 'Other observations', n_other) # If there are a mix of CTA and non-CTA observations and the method # is 'SLICE' then log a warning that non-CTA observations will be # ignored warning = False if n_cta > 0 and n_other > 0 and self._method == 'SLICE': warning = True # If there are only non-CTA observations and the method is 'SLICE' # then stop now elif n_other > 0: if self._method == 'SLICE': msg = 'Selected "SLICE" method but none of the observations ' \ 'is a CTA observation. Please select "AUTO" or "NODES" ' \ 'if no CTA observation is provided.' raise RuntimeError(msg) else: self._method = 'NODES' # Log selected spectrum method self._log_value(gammalib.TERSE, 'Selected spectrum method', self._method) # Signal warning if warning: self._log_string(gammalib.TERSE, ' WARNING: Only CTA observation ' 'can be handled with the "SLICE" method, all ' 'non-CTA observation will be ignored.') # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation. """ # Query datapath. If the parameter is not NONE then use it, otherwise # use the datapath from the VHEFITS environment variable datapath = self['datapath'].string() if gammalib.toupper(datapath) != 'NONE': self._datapath = datapath else: self._datapath = os.getenv('VHEFITS', '') # Expand environment self._datapath = gammalib.expand_env(self._datapath) # Get production name self._prodname = self['prodname'].string() # Master index file name master_indx = self['master_indx'].string() # Initialise flag if spatial selection is required self._select_radec = True # Initialise invalid radius self._radius = 0.0 # Check for validity of spatial parameters if (self['ra'].is_valid() and self['dec'].is_valid() and self['rad'].is_valid()): # Read spatial parameters self._ra = self['ra'].real() self._dec = self['dec'].real() self._radius = self['rad'].real() # ... otherwise signal that there are no spatial parameters for # selection else: self._select_radec = False # Check Radius for validity if self._radius <= 0.0: self._select_radec = False # Query other parameters self['min_qual'].integer() self['expression'].string() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Set filename of JSON master file and raise an exception if the file # does not exist master_file = os.path.join(self._datapath, master_indx) if not os.path.isfile(master_file): msg = ('FITS data store not available. No master index file found ' 'at "%s". Make sure the file is copied from the server and ' 'your datapath is set correctly.' % master_file) raise RuntimeError(msg) # Open and load JSON master file. If the "dataset" key is not available # then raise an exception json_data = open(master_file).read() data = json.loads(json_data) if not 'datasets' in data: msg = ('Key "datasets" not available in master index file.') raise RuntimeError(msg) # Get configurations from JSON master file configs = data['datasets'] # Initialise obs index file self._obs_index = '' # Get name of observation index file for config in configs: if self._prodname == config['name']: self._obs_index = str( os.path.join(self._datapath, config['obsindx'])) break # If the observation index file name is empty then raise an exception if self._obs_index == '': msg = ('FITS data store "%s" not available. Run csiactdata to get ' 'a list of available storage names.' % self._prodname) raise RuntimeError(msg) # If the observation index file is not a FITS file then raise an # exception filename = gammalib.GFilename(self._obs_index + '[OBS_INDEX]') if not filename.is_fits(): msg = ( 'Observation index file "%s[OBS_INDEX]" for FITS data store ' '"%s" not available. Check your master index file or run ' 'csiactdata to get a list of available storage names.' % (self._obs_index, self._prodname)) raise RuntimeError(msg) # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Return return
def _get_parameters(self): """ Get parameters from parfile and setup the observation """ # Setup observations (require response and allow event list as well as # counts cube) self._setup_observations(self.obs(), True, True, True) # Set observation statistic self._set_obs_statistic(gammalib.toupper(self['statistic'].string())) # Collect number of unbinned, binned and On/Off observations in # observation container n_unbinned = 0 n_binned = 0 n_onoff = 0 for obs in self.obs(): if obs.classname() == 'GCTAObservation': if obs.eventtype() == 'CountsCube': n_binned += 1 else: n_unbinned += 1 elif obs.classname() == 'GCTAOnOffObservation': n_onoff += 1 n_cta = n_unbinned + n_binned + n_onoff n_other = self.obs().size() - n_cta # Query whether to compute model for individual components components = self['components'].boolean() # If there is only one binned observation and no model for individual # components is required, query for precomputed model file and set # use_maps to True if self.obs().size() == 1 and n_binned == 1 and not components: self._use_maps = self['modcube'].is_valid() # If there are unbinned observations query the energy binning parameters if n_unbinned != 0: self['ebinalg'].string() if self['ebinalg'].string() == 'FILE': self['ebinfile'].filename() else: self['emin'].real() self['emax'].real() self['enumbins'].integer() if n_cta > n_unbinned: n_notunbin = n_cta - n_unbinned # If there is more than one observation, and observations are all # unbinned or all onoff query user to know if they wish stacked results if self.obs().size() > 1 and \ (n_unbinned == self.obs().size() or n_onoff == self.obs().size()): self._stack = self['stack'].boolean() # If we are to stack event lists query parameters for cube creation if self._stack and n_unbinned == self.obs().size(): self['coordsys'].string() self['proj'].string() self['xref'].real() self['yref'].real() self['nxpix'].integer() self['nypix'].integer() self['binsz'].real() # If we are not using a precomputed model and no models are available # in the observation container query input XML model file if not self._use_maps and self.obs().models().size() == 0: self.obs().models(self['inmodel'].filename()) # Unless all observations are On/Off query for mask definition if n_onoff == n_cta: pass else: self._mask = self['mask'].boolean() if self._mask: self['ra'].real() self['dec'].real() self['rad'].real() self['regfile'].query() # Unless all observations are On/Off, or we are using precomputed model # maps query whether to use energy dispersion if n_onoff == n_cta or self._use_maps: pass else: self['edisp'].boolean() # Query algorithm for residual computation self['algorithm'].string() # Read ahead output parameters if self._read_ahead(): self['outfile'].filename() # Write input parameters into logger self._log_parameters(gammalib.TERSE) # Write header for observation census self._log_header1(gammalib.TERSE, 'Observation census') # Log census of input observations self._log_value(gammalib.NORMAL, 'Unbinned CTA observations', n_unbinned) self._log_value(gammalib.NORMAL, 'Binned CTA observations', n_binned) self._log_value(gammalib.NORMAL, 'On/off CTA observations', n_onoff) self._log_value(gammalib.NORMAL, 'Other observations', n_other) if n_other > 0: msg = 'WARNING: Only CTA observation can be handled, all non-CTA ' \ + 'observations will be ignored.' self._log_string(gammalib.TERSE, msg) # Log for unbinned observations if n_unbinned != 0: msg = ' User defined energy binning will be used for %d unbinned ' \ 'observations.' % (n_unbinned) self._log_string(gammalib.TERSE, msg) if n_cta > n_unbinned: msg = ' The intrinsic binning will be used for the remaining ' \ '%d CTA observations.' % (n_notunbin) self._log_string(gammalib.TERSE, msg) # Signal how energy dispersion is applied if n_onoff == n_cta or self._use_maps: msg = ' Energy dispersion is applied based on the input data/model ' \ + 'and not according to the edisp parameter' self._log_string(gammalib.TERSE, msg) # Return return
def _trial(self, seed): """ Compute the pull for a single trial Parameters ---------- seed : int Random number generator seed Returns ------- result : dict Dictionary of results """ # Write header self._log_header2(gammalib.NORMAL, 'Trial %d' % (seed-self['seed'].integer()+1)) # Get number of energy bins and On source name and initialise # some parameters nbins = self['enumbins'].integer() onsrc = self['onsrc'].string() edisp = self['edisp'].boolean() statistic = self['statistic'].string() emin = None emax = None binsz = 0.0 npix = 0 proj = 'TAN' coordsys = 'CEL' # If we have a On source name then set On region radius if gammalib.toupper(onsrc) != 'NONE': onrad = self['onrad'].real() emin = self['emin'].real() emax = self['emax'].real() edisp = True # Use always energy dispersion for On/Off else: # Reset On region source name and radius onrad = 0.0 onsrc = None # If we have a binned obeservation then specify the lower and # upper energy limit in TeV if nbins > 0: emin = self['emin'].real() emax = self['emax'].real() binsz = self['binsz'].real() npix = self['npix'].integer() proj = self['proj'].string() coordsys = self['coordsys'].string() # Simulate events obs = obsutils.sim(self.obs(), emin=emin, emax=emax, nbins=nbins, onsrc=onsrc, onrad=onrad, addbounds=True, seed=seed, binsz=binsz, npix=npix, proj=proj, coord=coordsys, edisp=edisp, log=False, debug=self._logDebug(), chatter=self['chatter'].integer()) # Determine number of events in simulation nevents = 0.0 for run in obs: nevents += run.nobserved() # Write simulation results self._log_header3(gammalib.NORMAL, 'Simulation') for run in self.obs(): self._log_value(gammalib.NORMAL, 'Input observation %s' % run.id(), self._obs_string(run)) for run in obs: self._log_value(gammalib.NORMAL, 'Output observation %s' % run.id(), self._obs_string(run)) self._log_value(gammalib.NORMAL, 'Number of simulated events', nevents) # Fit model if self['profile'].boolean(): models = self.obs().models() for model in models: like = ctools.cterror(obs) like['srcname'] = model.name() like['edisp'] = edisp like['statistic'] = statistic like['debug'] = self._logDebug() like['chatter'] = self['chatter'].integer() like.run() else: like = ctools.ctlike(obs) like['edisp'] = edisp like['statistic'] = statistic like['debug'] = self._logDebug() like['chatter'] = self['chatter'].integer() like.run() # Store results logL = like.opt().value() npred = like.obs().npred() models = like.obs().models() # Write result header self._log_header3(gammalib.NORMAL, 'Pulls') # Gather results in form of a list of result columns and a # dictionary containing the results. The result contains the # log-likelihood, the number of simulated events, the number of # predicted events and for each fitted parameter the fitted value, # the pull and the fit error. # # Note that we do not use the model and parameter iterators # because we need the indices to get the true (or real) parameter # values from the input models. colnames = ['LogL', 'Sim_Events', 'Npred_Events'] values = {'LogL': logL, 'Sim_Events': nevents, 'Npred_Events': npred} for i in range(models.size()): model = models[i] for k in range(model.size()): par = model[k] if par.is_free(): # Set name as a combination of model name and parameter # name separated by an underscore. In that way each # parameter has a unique name. name = model.name()+'_'+par.name() # Append parameter, Pull_parameter and e_parameter column # names colnames.append(name) colnames.append('Pull_'+name) colnames.append('e_'+name) # Compute pull for this parameter as the difference # (fitted - true) / error # In case that the error is 0 the pull is set to 99 fitted_value = par.value() real_value = self.obs().models()[i][k].value() error = par.error() if error != 0.0: pull = (fitted_value - real_value) / error else: pull = 99.0 # Store results in dictionary values[name] = fitted_value values['Pull_'+name] = pull values['e_'+name] = error # Write results into logger value = '%.4f (%e +/- %e)' % (pull, fitted_value, error) self._log_value(gammalib.NORMAL, name, value) # Bundle together results in a dictionary result = {'colnames': colnames, 'values': values} # Return return result