def test_extract( pars, results, observations_hess_dl3, spectrum_dataset_crab_fine, reflected_regions_bkg_maker, ): """Test quantitative output for various configs""" safe_mask_maker = SafeMaskMaker() maker = SpectrumDatasetMaker( containment_correction=pars["containment_correction"]) obs = observations_hess_dl3[0] dataset = maker.run(spectrum_dataset_crab_fine, obs) dataset = reflected_regions_bkg_maker.run(dataset, obs) dataset = safe_mask_maker.run(dataset, obs) aeff_actual = dataset.aeff.data.evaluate(energy_true=5 * u.TeV) edisp_actual = dataset.edisp.data.evaluate(energy_true=5 * u.TeV, energy=5.2 * u.TeV) assert_quantity_allclose(aeff_actual, results["aeff"], rtol=1e-3) assert_quantity_allclose(edisp_actual, results["edisp"], rtol=1e-3) # TODO: Introduce assert_stats_allclose info = dataset.info_dict() assert info["n_on"] == results["n_on"] assert_allclose(info["significance"], results["sigma"], atol=1e-2) gti_obs = obs.gti.table gti_dataset = dataset.gti.table assert_allclose(gti_dataset["START"], gti_obs["START"]) assert_allclose(gti_dataset["STOP"], gti_obs["STOP"])
def create_datasets_1d(observations, target_position): on_region_radius = Angle("0.11 deg") on_region = CircleSkyRegion(center=target_position, radius=on_region_radius) # Target geometry definition e_reco = MapAxis.from_energy_bounds(0.23, 20, 12, "TeV") e_true = MapAxis.from_energy_bounds(0.1, 40, 40, "TeV", name="energy_true") #data reduction makers dataset_maker = SpectrumDatasetMaker( containment_correction=True, selection=["counts", "exposure", "edisp"]) bkg_maker = ReflectedRegionsBackgroundMaker() safe_mask_maker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10) datasets = [] geom = RegionGeom(on_region, axes=[e_reco]) dataset_empty = SpectrumDataset.create(geom=geom, energy_axis_true=e_true) for obs in observations: dataset = dataset_maker.run(dataset_empty.copy(), obs) dataset_on_off = bkg_maker.run(dataset, obs) if dataset_on_off.counts_off.data.sum() > 0: dataset_on_off = safe_mask_maker.run(dataset_on_off, obs) datasets.append(dataset_on_off) return datasets
def test_adaptive_ring_bkg_maker(pars, geom, observations, exclusion_mask): adaptive_ring_bkg_maker = AdaptiveRingBackgroundMaker( r_in="0.2 deg", width="0.3 deg", r_out_max="2 deg", stepsize="0.2 deg", exclusion_mask=exclusion_mask, method=pars["method"], ) safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max="2 deg") map_dataset_maker = MapDatasetMaker( selection=["counts", "background", "exposure"]) obs = observations[pars["obs_idx"]] dataset = MapDataset.create(geom).cutout(obs.pointing_radec, width="4 deg") dataset = map_dataset_maker.run(dataset, obs) dataset = safe_mask_maker.run(dataset, obs) dataset = dataset.to_image() dataset_on_off = adaptive_ring_bkg_maker.run(dataset) mask = dataset.mask_safe assert_allclose(dataset_on_off.counts_off.data[mask].sum(), pars["counts_off"]) assert_allclose(dataset_on_off.acceptance_off.data[mask].sum(), pars["acceptance_off"]) assert_allclose(dataset_on_off.alpha.data[0][100][100], pars["alpha"]) assert_allclose(dataset_on_off.exposure.data[0][100][100], pars["exposure"])
def test_safe_mask_maker_bkg_invalid(observations_hess_dl3): obs = observations_hess_dl3[0] axis = MapAxis.from_bounds(0.1, 10, nbin=16, unit="TeV", name="energy", interp="log") axis_true = MapAxis.from_bounds(0.1, 50, nbin=30, unit="TeV", name="energy_true", interp="log") geom = WcsGeom.create(npix=(9, 9), axes=[axis], skydir=obs.pointing_radec) empty_dataset = MapDataset.create(geom=geom, energy_axis_true=axis_true) dataset_maker = MapDatasetMaker() safe_mask_maker_nonan = SafeMaskMaker([]) dataset = dataset_maker.run(empty_dataset, obs) bkg = dataset.background.data bkg[0, 0, 0] = np.nan mask_nonan = safe_mask_maker_nonan.make_mask_bkg_invalid(dataset) assert not mask_nonan[0, 0, 0] assert_allclose(bkg[mask_nonan].max(), 20.656366) dataset = safe_mask_maker_nonan.run(dataset, obs) assert_allclose(dataset.mask_safe, mask_nonan)
def simulate_single(self, pointing, models=None, empty=None, random_state="random-seed"): obs = Observation.create(pointing=pointing, livetime=self.livetime, irfs=self.get_irf()) maker = MapDatasetMaker( selection=["exposure", "background", "psf", "edisp"]) maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=2.0 * u.deg) dataset = maker.run(empty, obs) dataset = maker_safe_mask.run(dataset, obs) dataset.models = Models([models]) #fluctuate the background - gaussian fluctuations bkg_factor = np.random.normal(self.mean_bkg, self.sigma_bkg) while bkg_factor < 0.0: bkg_factor = np.random.normal(self.mean_bkg, self.sigma_bkg) dataset.background.data = bkg_factor * dataset.background.data self.bkg_norms.append(bkg_factor) #Poission fluctuate source + background dataset.fake() dataset.models = None #remove the model on the dataset dataset.background.data /= bkg_factor # restore the old background return dataset
def test_ring_bkg_maker(geom, observations, exclusion_mask): ring_bkg_maker = RingBackgroundMaker(r_in="0.2 deg", width="0.3 deg", exclusion_mask=exclusion_mask) safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max="2 deg") map_dataset_maker = MapDatasetMaker( selection=["counts", "background", "exposure"]) reference = MapDataset.create(geom) datasets = [] for obs in observations: cutout = reference.cutout(obs.pointing_radec, width="4 deg") dataset = map_dataset_maker.run(cutout, obs) dataset = safe_mask_maker.run(dataset, obs) dataset = dataset.to_image() dataset_on_off = ring_bkg_maker.run(dataset) datasets.append(dataset_on_off) mask = dataset.mask_safe assert_allclose(datasets[0].counts_off.data[mask].sum(), 2511333) assert_allclose(datasets[1].counts_off.data[mask].sum(), 2143577.0) assert_allclose(datasets[0].acceptance_off.data[mask].sum(), 2961300, rtol=1e-5) assert_allclose(datasets[1].acceptance_off.data[mask].sum(), 2364657.2, rtol=1e-5) assert_allclose(datasets[0].alpha.data[0][100][100], 0.00063745599, rtol=1e-5) assert_allclose(datasets[0].exposure.data[0][100][100], 806254444.8480084, rtol=1e-5)
def test_safe_mask_maker_dc1(spectrum_dataset_gc, observations_cta_dc1): safe_mask_maker = SafeMaskMaker(methods=["edisp-bias", "aeff-max"]) obs = observations_cta_dc1[0] maker = SpectrumDatasetMaker() dataset = maker.run(spectrum_dataset_gc, obs) dataset = safe_mask_maker.run(dataset, obs) assert_allclose(dataset.energy_range[0].value, 3.162278, rtol=1e-3) assert dataset.energy_range[0].unit == "TeV"
def data_prep(): data_store = DataStore.from_dir("$GAMMAPY_DATA/cta-1dc/index/gps/") OBS_ID = 110380 obs_ids = OBS_ID * np.ones(N_OBS) observations = data_store.get_observations(obs_ids) energy_axis = MapAxis.from_bounds(0.1, 10, nbin=10, unit="TeV", name="energy", interp="log") geom = WcsGeom.create( skydir=(0, 0), binsz=0.02, width=(10, 8), frame="galactic", proj="CAR", axes=[energy_axis], ) energy_axis_true = MapAxis.from_bounds(0.05, 20, nbin=30, unit="TeV", name="energy_true", interp="log") offset_max = 4 * u.deg maker = MapDatasetMaker() safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max=offset_max) stacked = MapDataset.create(geom=geom, energy_axis_true=energy_axis_true) spatial_model = PointSpatialModel(lon_0="-0.05 deg", lat_0="-0.05 deg", frame="galactic") spectral_model = ExpCutoffPowerLawSpectralModel( index=2, amplitude=3e-12 * u.Unit("cm-2 s-1 TeV-1"), reference=1.0 * u.TeV, lambda_=0.1 / u.TeV, ) model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model, name="gc-source") datasets = Datasets([]) for idx, obs in enumerate(observations): cutout = stacked.cutout(obs.pointing_radec, width=2 * offset_max, name=f"dataset{idx}") dataset = maker.run(cutout, obs) dataset = safe_mask_maker.run(dataset, obs) dataset.models = [model, FoVBackgroundModel(dataset_name=dataset.name)] datasets.append(dataset) return datasets
def obs_dataset(geom, observation): safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max="2 deg") map_dataset_maker = MapDatasetMaker(selection=["counts", "background", "exposure"]) reference = MapDataset.create(geom) cutout = reference.cutout( observation.pointing_radec, width="4 deg", name="test-fov" ) dataset = map_dataset_maker.run(cutout, observation) dataset = safe_mask_maker.run(dataset, observation) return dataset
def test_compute_energy_threshold(self, spectrum_dataset_crab_fine, observations_hess_dl3): maker = SpectrumDatasetMaker(containment_correction=True) safe_mask_maker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10) obs = observations_hess_dl3[0] dataset = maker.run(spectrum_dataset_crab_fine, obs) dataset = safe_mask_maker.run(dataset, obs) actual = dataset.energy_range[0] assert_quantity_allclose(actual, 0.8799225 * u.TeV, rtol=1e-3)
def test_extract( pars, results, observations_hess_dl3, spectrum_dataset_crab_fine, reflected_regions_bkg_maker, ): """Test quantitative output for various configs""" safe_mask_maker = SafeMaskMaker() maker = SpectrumDatasetMaker( containment_correction=pars["containment_correction"] ) obs = observations_hess_dl3[0] dataset = maker.run(spectrum_dataset_crab_fine, obs) dataset = reflected_regions_bkg_maker.run(dataset, obs) dataset = safe_mask_maker.run(dataset, obs) exposure_actual = ( dataset.exposure.interp_by_coord( { "energy_true": 5 * u.TeV, "skycoord": dataset.counts.geom.center_skydir, } ) * dataset.exposure.unit ) edisp_actual = dataset.edisp.get_edisp_kernel().evaluate( energy_true=5 * u.TeV, energy=5.2 * u.TeV ) aeff_actual = exposure_actual / dataset.exposure.meta["livetime"] assert_quantity_allclose(aeff_actual, results["aeff"], rtol=1e-3) assert_quantity_allclose(edisp_actual, results["edisp"], rtol=1e-3) # TODO: Introduce assert_stats_allclose info = dataset.info_dict() assert info["counts"] == results["n_on"] assert_allclose(info["sqrt_ts"], results["sigma"], rtol=1e-2) gti_obs = obs.gti.table gti_dataset = dataset.gti.table assert_allclose(gti_dataset["START"], gti_obs["START"]) assert_allclose(gti_dataset["STOP"], gti_obs["STOP"])
def data_prep(): data_store = DataStore.from_dir("$GAMMAPY_DATA/cta-1dc/index/gps/") OBS_ID = 110380 obs_ids = OBS_ID * np.ones(N_OBS) observations = data_store.get_observations(obs_ids) energy_axis = MapAxis.from_bounds(0.1, 10, nbin=10, unit="TeV", name="energy", interp="log") geom = WcsGeom.create( skydir=(0, 0), binsz=0.05, width=(10, 8), frame="galactic", proj="CAR", axes=[energy_axis], ) stacked = MapDataset.create(geom, name="stacked_ds") maker = MapDatasetMaker() safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max="4 deg") for obs in observations: dataset = maker.run(stacked, obs) dataset = safe_mask_maker.run(dataset, obs) stacked.stack(dataset) spatial_model = PointSpatialModel(lon_0="0.01 deg", lat_0="0.01 deg", frame="galactic") spectral_model = ExpCutoffPowerLawSpectralModel( index=2, amplitude=3e-12 * u.Unit("cm-2 s-1 TeV-1"), reference=1.0 * u.TeV, lambda_=0.1 / u.TeV, ) model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model, name="gc-source") stacked.models.append(model) return Datasets([stacked])
def test_safe_mask_maker_dl3(spectrum_dataset_crab, observations_hess_dl3): safe_mask_maker = SafeMaskMaker() maker = SpectrumDatasetMaker() obs = observations_hess_dl3[0] dataset = maker.run(spectrum_dataset_crab, obs) dataset = safe_mask_maker.run(dataset, obs) assert_allclose(dataset.energy_range[0].value, 1) assert dataset.energy_range[0].unit == "TeV" mask_safe = safe_mask_maker.make_mask_energy_aeff_max(dataset) assert mask_safe.data.sum() == 4 mask_safe = safe_mask_maker.make_mask_energy_edisp_bias(dataset) assert mask_safe.data.sum() == 3 mask_safe = safe_mask_maker.make_mask_energy_bkg_peak(dataset) assert mask_safe.data.sum() == 3
def test_map_maker(pars, observations): stacked = MapDataset.create( geom=pars["geom"], energy_axis_true=pars["e_true"], binsz_irf=pars["binsz_irf"], migra_axis=pars["migra"], ) maker = MapDatasetMaker( background_oversampling=pars.get("background_oversampling")) safe_mask_maker = SafeMaskMaker(methods=["offset-max"], offset_max="2 deg") for obs in observations: cutout = stacked.cutout(position=obs.pointing_radec, width="4 deg") dataset = maker.run(cutout, obs) dataset = safe_mask_maker.run(dataset, obs) stacked.stack(dataset) counts = stacked.counts assert counts.unit == "" assert_allclose(counts.data.sum(), pars["counts"], rtol=1e-5) exposure = stacked.exposure assert exposure.unit == "m2 s" assert_allclose(exposure.data.mean(), pars["exposure"], rtol=3e-3) background = stacked.npred_background() assert background.unit == "" assert_allclose(background.data.sum(), pars["background"], rtol=1e-4) image_dataset = stacked.to_image() counts = image_dataset.counts assert counts.unit == "" assert_allclose(counts.data.sum(), pars["counts"], rtol=1e-4) exposure = image_dataset.exposure assert exposure.unit == "m2 s" assert_allclose(exposure.data.sum(), pars["exposure_image"], rtol=1e-3) background = image_dataset.npred_background() assert background.unit == "" assert_allclose(background.data.sum(), pars["background"], rtol=1e-4)
def create_datasets_3d(observations, target_position): # Target geometry definition e_reco = MapAxis.from_energy_bounds(0.23, 20, 12, "TeV") e_true = MapAxis.from_energy_bounds(0.1, 40, 40, "TeV", name="energy_true") geom = WcsGeom.create(skydir=target_position, width=(2, 2), binsz=0.02, axes=[e_reco]) exclusion_region = CircleSkyRegion(target_position, 0.3 * u.deg) exclusion_mask = geom.region_mask([exclusion_region], inside=False) offset_max = 2.0 * u.deg #data reduction makers maker = MapDatasetMaker() bkg_maker = FoVBackgroundMaker(method="scale", exclusion_mask=exclusion_mask) safe_mask_maker = SafeMaskMaker(methods=["aeff-max", "offset-max"], aeff_percent=10, offset_max=offset_max) datasets = [] dataset_empty = MapDataset.create(geom=geom, energy_axis_true=e_true) for obs in observations: cutout = dataset_empty.cutout(obs.pointing_radec, width=2 * offset_max) # A MapDataset is filled in this cutout geometry dataset = maker.run(cutout, obs) # The data quality cut is applied dataset = safe_mask_maker.run(dataset, obs) # fit background model dataset = bkg_maker.run(dataset) print( f"Background norm obs {obs.obs_id}: {dataset.background_model.spectral_model.norm.value:.2f}" ) datasets.append(dataset) return datasets
def test_minimal_datastore(): """ "Check that a standard analysis runs on a minimal datastore""" energy_axis = MapAxis.from_energy_bounds(1, 10, nbin=3, per_decade=False, unit="TeV", name="energy") geom = WcsGeom.create( skydir=(83.633, 22.014), binsz=0.5, width=(2, 2), frame="icrs", proj="CAR", axes=[energy_axis], ) data_store = DataStore.from_dir("$GAMMAPY_DATA/tests/minimal_datastore") observations = data_store.get_observations() maker = MapDatasetMaker() offset_max = 2.3 * u.deg maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=offset_max) circle = CircleSkyRegion(center=SkyCoord("83.63 deg", "22.14 deg"), radius=0.2 * u.deg) exclusion_mask = ~geom.region_mask(regions=[circle]) maker_fov = FoVBackgroundMaker(method="fit", exclusion_mask=exclusion_mask) stacked = MapDataset.create(geom=geom, name="crab-stacked") for obs in observations: dataset = maker.run(stacked, obs) dataset = maker_safe_mask.run(dataset, obs) dataset = maker_fov.run(dataset) stacked.stack(dataset) assert_allclose(stacked.exposure.data.sum(), 6.01909e10) assert_allclose(stacked.counts.data.sum(), 1446) assert_allclose(stacked.background.data.sum(), 1445.9841)
def test_map_dataset_maker_hpx(geom_config_hpx, observations): reference = MapDataset.create(**geom_config_hpx, binsz_irf=5 * u.deg) maker = MapDatasetMaker() safe_mask_maker = SafeMaskMaker(offset_max="2.5 deg", methods=["aeff-default", "offset-max"]) dataset = maker.run(reference, observation=observations[0]) dataset = safe_mask_maker.run(dataset, observation=observations[0]).to_masked() assert_allclose(dataset.counts.data.sum(), 4264) assert_allclose(dataset.background.data.sum(), 2964.5369, rtol=1e-5) assert_allclose(dataset.exposure.data[4, 1000], 5.987e09, rtol=1e-4) coords = SkyCoord([0, 3], [0, 0], frame="galactic", unit="deg") coords = {"skycoord": coords, "energy": 1 * u.TeV} assert_allclose(dataset.mask_safe.get_by_coord(coords), [True, False]) kernel = dataset.edisp.get_edisp_kernel() assert_allclose(kernel.data.sum(axis=1)[3], 1, rtol=0.01)
def test_reflected_bkg_maker_no_off(reflected_bkg_maker, observations, caplog): pos = SkyCoord(83.6333313, 21.51444435, unit="deg", frame="icrs") radius = Angle(0.11, "deg") region = CircleSkyRegion(pos, radius) maker = SpectrumDatasetMaker(selection=["counts", "exposure"]) datasets = [] e_reco = MapAxis.from_edges(np.logspace(0, 2, 5) * u.TeV, name="energy") e_true = MapAxis.from_edges(np.logspace(-0.5, 2, 11) * u.TeV, name="energy_true") geom = RegionGeom.create(region=region, axes=[e_reco]) dataset_empty = SpectrumDataset.create(geom=geom, energy_axis_true=e_true) safe_mask_masker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10) for obs in observations: dataset = maker.run(dataset_empty, obs) dataset_on_off = reflected_bkg_maker.run(dataset, obs) dataset_on_off = safe_mask_masker.run(dataset_on_off, obs) datasets.append(dataset_on_off) assert datasets[0].counts_off is None assert_allclose(datasets[0].acceptance_off, 0) assert_allclose(datasets[0].mask_safe.data, False) assert "WARNING" in [record.levelname for record in caplog.records] message1 = ( f"ReflectedRegionsBackgroundMaker failed. " f"No OFF region found outside exclusion mask for dataset '{datasets[0].name}'." ) message2 = (f"ReflectedRegionsBackgroundMaker failed. " f"Setting {datasets[0].name} mask to False.") assert message1 in [record.message for record in caplog.records] assert message2 in [record.message for record in caplog.records]
channels = ["b"] columns = ['ch', 'mass', 'sigma_v'] table = pd.DataFrame(columns=columns) # Make the MapDataset empty = MapDataset.create(geom, name="dataset-simu") maker = MapDatasetMaker(selection=["exposure", "background", "psf", "edisp"]) maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=offset) NumberOfRuns = 2 for run in range(NumberOfRuns): # Create simulated dataset dataset = maker.run(empty, obs) dataset = maker_safe_mask.run(dataset, obs) dataset.models = models dataset.fake(int(time.time())) for ch in channels: for mass in masses: flux_model_fit = DarkMatterAnnihilationSpectralModel(mass=mass, channel=ch, jfactor=JFAC) #spatial_model_fit = TemplateSpatialModel.read(jfactor_filename) model_fit = SkyModel(spatial_model=spatial_model, spectral_model=flux_model_fit, name="model-fit")
def _spectrum_extraction(self): """Run all steps for the spectrum extraction.""" log.info("Reducing spectrum datasets.") datasets_settings = self.config.datasets on_lon = datasets_settings.on_region.lon on_lat = datasets_settings.on_region.lat on_center = SkyCoord(on_lon, on_lat, frame=datasets_settings.on_region.frame) on_region = CircleSkyRegion(on_center, datasets_settings.on_region.radius) maker_config = {} if datasets_settings.containment_correction: maker_config[ "containment_correction"] = datasets_settings.containment_correction e_reco = self._make_energy_axis(datasets_settings.geom.axes.energy) maker_config["selection"] = ["counts", "exposure", "edisp"] dataset_maker = SpectrumDatasetMaker(**maker_config) bkg_maker_config = {} if datasets_settings.background.exclusion: exclusion_region = Map.read(datasets_settings.background.exclusion) bkg_maker_config["exclusion_mask"] = exclusion_region bkg_maker_config.update(datasets_settings.background.parameters) bkg_method = datasets_settings.background.method if bkg_method == "reflected": bkg_maker = ReflectedRegionsBackgroundMaker(**bkg_maker_config) log.debug( f"Creating ReflectedRegionsBackgroundMaker with arguments {bkg_maker_config}" ) else: bkg_maker = None log.warning( f"No background maker set for 1d analysis. Check configuration." ) safe_mask_selection = datasets_settings.safe_mask.methods safe_mask_settings = datasets_settings.safe_mask.parameters safe_mask_maker = SafeMaskMaker(methods=safe_mask_selection, **safe_mask_settings) e_true = self._make_energy_axis( datasets_settings.geom.axes.energy_true, name="energy_true") geom = RegionGeom.create(region=on_region, axes=[e_reco]) reference = SpectrumDataset.create(geom=geom, energy_axis_true=e_true) datasets = [] for obs in self.observations: log.info(f"Processing observation {obs.obs_id}") dataset = dataset_maker.run(reference.copy(), obs) if bkg_maker is not None: dataset = bkg_maker.run(dataset, obs) if dataset.counts_off is None: log.info( f"No OFF region found for observation {obs.obs_id}. Discarding." ) continue dataset = safe_mask_maker.run(dataset, obs) log.debug(dataset) datasets.append(dataset) self.datasets = Datasets(datasets) if datasets_settings.stack: stacked = self.datasets.stack_reduce(name="stacked") self.datasets = Datasets([stacked])
def _map_making(self): """Make maps and datasets for 3d analysis.""" datasets_settings = self.config.datasets log.info("Creating geometry.") geom = self._create_geometry() geom_settings = datasets_settings.geom geom_irf = dict(energy_axis_true=None, binsz_irf=None) if geom_settings.axes.energy_true.min is not None: geom_irf["energy_axis_true"] = self._make_energy_axis( geom_settings.axes.energy_true, name="energy_true") geom_irf["binsz_irf"] = geom_settings.wcs.binsize_irf.to("deg").value offset_max = geom_settings.selection.offset_max log.info("Creating datasets.") maker = MapDatasetMaker(selection=datasets_settings.map_selection) safe_mask_selection = datasets_settings.safe_mask.methods safe_mask_settings = datasets_settings.safe_mask.parameters maker_safe_mask = SafeMaskMaker(methods=safe_mask_selection, **safe_mask_settings) bkg_maker_config = {} if datasets_settings.background.exclusion: exclusion_region = Map.read(datasets_settings.background.exclusion) bkg_maker_config["exclusion_mask"] = exclusion_region bkg_maker_config.update(datasets_settings.background.parameters) bkg_method = datasets_settings.background.method if bkg_method == "fov_background": log.debug( f"Creating FoVBackgroundMaker with arguments {bkg_maker_config}" ) bkg_maker = FoVBackgroundMaker(**bkg_maker_config) elif bkg_method == "ring": bkg_maker = RingBackgroundMaker(**bkg_maker_config) log.debug( f"Creating RingBackgroundMaker with arguments {bkg_maker_config}" ) if datasets_settings.geom.axes.energy.nbins > 1: raise ValueError( "You need to define a single-bin energy geometry for your dataset." ) else: bkg_maker = None log.warning( f"No background maker set for 3d analysis. Check configuration." ) stacked = MapDataset.create(geom=geom, name="stacked", **geom_irf) if datasets_settings.stack: for obs in self.observations: log.info(f"Processing observation {obs.obs_id}") cutout = stacked.cutout(obs.pointing_radec, width=2 * offset_max) dataset = maker.run(cutout, obs) dataset = maker_safe_mask.run(dataset, obs) if bkg_maker is not None: dataset = bkg_maker.run(dataset) if bkg_method == "ring": dataset = dataset.to_map_dataset() log.debug(dataset) stacked.stack(dataset) datasets = [stacked] else: datasets = [] for obs in self.observations: log.info(f"Processing observation {obs.obs_id}") cutout = stacked.cutout(obs.pointing_radec, width=2 * offset_max) dataset = maker.run(cutout, obs) dataset = maker_safe_mask.run(dataset, obs) if bkg_maker is not None: dataset = bkg_maker.run(dataset) log.debug(dataset) datasets.append(dataset) self.datasets = Datasets(datasets)
def data_prep(): data_store = DataStore.from_dir("$GAMMAPY_DATA/hess-dl3-dr1/") OBS_ID = 23523 obs_ids = OBS_ID * np.ones(N_OBS) observations = data_store.get_observations(obs_ids) target_position = SkyCoord(ra=83.63, dec=22.01, unit="deg", frame="icrs") on_region_radius = Angle("0.11 deg") on_region = CircleSkyRegion(center=target_position, radius=on_region_radius) exclusion_region = CircleSkyRegion( center=SkyCoord(183.604, -8.708, unit="deg", frame="galactic"), radius=0.5 * u.deg, ) skydir = target_position.galactic exclusion_mask = Map.create(npix=(150, 150), binsz=0.05, skydir=skydir, proj="TAN", frame="galactic") mask = exclusion_mask.geom.region_mask([exclusion_region], inside=False) exclusion_mask.data = mask e_reco = MapAxis.from_bounds(0.1, 40, nbin=40, interp="log", unit="TeV", name="energy") e_true = MapAxis.from_bounds(0.05, 100, nbin=200, interp="log", unit="TeV", name="energy_true") stacked = SpectrumDatasetOnOff.create(region=on_region, e_reco=e_reco, e_true=e_true, name="stacked") dataset_maker = SpectrumDatasetMaker(containment_correction=False, selection=["counts", "aeff", "edisp"]) bkg_maker = ReflectedRegionsBackgroundMaker(exclusion_mask=exclusion_mask) safe_mask_masker = SafeMaskMaker(methods=["aeff-max"], aeff_percent=10) spectral_model = PowerLawSpectralModel(index=2, amplitude=2e-11 * u.Unit("cm-2 s-1 TeV-1"), reference=1 * u.TeV) spatial_model = PointSpatialModel(lon_0=target_position.ra, lat_0=target_position.dec, frame="icrs") spatial_model.lon_0.frozen = True spatial_model.lat_0.frozen = True sky_model = SkyModel(spatial_model=spatial_model, spectral_model=spectral_model, name="") for observation in observations: dataset = stacked.copy(name=f"dataset-{observation.obs_id}") dataset = dataset_maker.run(dataset=dataset, observation=observation) dataset_on_off = bkg_maker.run(dataset, observation) dataset_on_off = safe_mask_masker.run(dataset_on_off, observation) stacked.stack(dataset_on_off) stacked.models = sky_model return Datasets([stacked])
def simulate(): irfs = load_cta_irfs( "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits" ) center = SkyCoord(0.0, 0.0, unit="deg", frame="galactic") energy_reco = MapAxis.from_edges(np.logspace(-1.0, 1.0, 10), unit="TeV", name="energy", interp="log") pointing = SkyCoord(0.5, 0.5, unit="deg", frame="galactic") geom = WcsGeom.create( skydir=center, binsz=0.02, width=(4, 4), frame="galactic", axes=[energy_reco], ) energy_true = MapAxis.from_edges(np.logspace(-1.5, 1.5, 30), unit="TeV", name="energy_true", interp="log") spectral_model = PowerLawSpectralModel(index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV") temporal_model = ExpDecayTemporalModel(t0="6 h", t_ref=gti_t0.mjd * u.d) spatial_model = GaussianSpatialModel(lon_0="0.2 deg", lat_0="0.1 deg", sigma="0.3 deg", frame="galactic") model_simu = SkyModel( spectral_model=spectral_model, spatial_model=spatial_model, temporal_model=temporal_model, name="model-simu", ) lvtm = np.ones(N_OBS) * 1.0 * u.hr tstart = 1.0 * u.hr datasets = [] for i in range(N_OBS): obs = Observation.create( pointing=pointing, livetime=lvtm[i], tstart=tstart, irfs=irfs, reference_time=gti_t0, ) empty = MapDataset.create(geom, name=f"dataset_{i}", energy_axis_true=energy_true) maker = MapDatasetMaker( selection=["exposure", "background", "psf", "edisp"]) maker_safe_mask = SafeMaskMaker(methods=["offset-max"], offset_max=4.0 * u.deg) dataset = maker.run(empty, obs) dataset = maker_safe_mask.run(dataset, obs) dataset.models = [ model_simu, FoVBackgroundModel(dataset_name=dataset.name) ] dataset.fake() datasets.append(dataset) tstart = tstart + 2.0 * u.hr return datasets