Example #1
0
def test_spectrum_dataset_on_off_to_yaml(tmpdir):
    spectrum_datasets_on_off = make_observation_list()
    datasets = Datasets(spectrum_datasets_on_off)
    datasets.to_yaml(path=tmpdir)
    datasets_read = Datasets.from_yaml(tmpdir / "_datasets.yaml",
                                       tmpdir / "_models.yaml")
    assert len(datasets_read) == len(datasets)
    assert datasets_read[0].name == datasets[0].name
    assert datasets_read[1].name == datasets[1].name
    assert datasets_read[1].counts.data.sum() == datasets[1].counts.data.sum()
Example #2
0
def test_datasets_io_no_model(tmpdir):
    axis = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=2)
    geom = WcsGeom.create(npix=(5, 5), axes=[axis])
    dataset_1 = MapDataset.create(geom, name="1")
    dataset_2 = MapDataset.create(geom, name="2")

    datasets = Datasets([dataset_1, dataset_2])

    datasets.to_yaml(path=tmpdir, prefix="test")

    filename_1 = tmpdir / "test_data_1.fits"
    assert filename_1.exists()

    filename_2 = tmpdir / "test_data_2.fits"
    assert filename_2.exists()
Example #3
0
def make_datasets_example():
    # Define which data to use and print some information

    energy_axis = MapAxis.from_edges(
        np.logspace(-1.0, 1.0, 4), unit="TeV", name="energy", interp="log"
    )
    geom0 = WcsGeom.create(
        skydir=(0, 0),
        binsz=0.1,
        width=(1, 1),
        coordsys="GAL",
        proj="CAR",
        axes=[energy_axis],
    )
    geom1 = WcsGeom.create(
        skydir=(1, 0),
        binsz=0.1,
        width=(1, 1),
        coordsys="GAL",
        proj="CAR",
        axes=[energy_axis],
    )
    geoms = [geom0, geom1]

    sources_coords = [(0, 0), (0.9, 0.1)]
    names = ["gc", "g09"]
    models = []

    for ind, (lon, lat) in enumerate(sources_coords):
        spatial_model = PointSpatialModel(
            lon_0=lon * u.deg, lat_0=lat * u.deg, frame="galactic"
        )
        spectral_model = ExpCutoffPowerLawSpectralModel(
            index=2 * u.Unit(""),
            amplitude=3e-12 * u.Unit("cm-2 s-1 TeV-1"),
            reference=1.0 * u.TeV,
            lambda_=0.1 / u.TeV,
        )
        model_ecpl = SkyModel(
            spatial_model=spatial_model, spectral_model=spectral_model, name=names[ind]
        )
        models.append(model_ecpl)

    # test to link a spectral parameter
    params0 = models[0].spectral_model.parameters
    params1 = models[1].spectral_model.parameters
    ind = params0.parameters.index(params0["reference"])
    params0.parameters[ind] = params1["reference"]

    # update the sky model
    ind = models[0].parameters.parameters.index(models[0].parameters["reference"])
    models[0].parameters.parameters[ind] = params1["reference"]

    obs_ids = [110380, 111140, 111159]
    data_store = DataStore.from_dir("$GAMMAPY_DATA/cta-1dc/index/gps/")

    diffuse_model = SkyDiffuseCube.read(
        "$GAMMAPY_DATA/fermi_3fhl/gll_iem_v06_cutout.fits"
    )

    datasets_list = []
    for idx, geom in enumerate(geoms):
        observations = data_store.get_observations(obs_ids)

        stacked = MapDataset.create(geom=geom)
        stacked.background_model.name = "background_irf_" + names[idx]

        maker = MapDatasetMaker(geom=geom, offset_max=4.0 * u.deg)

        for obs in observations:
            dataset = maker.run(obs)
            stacked.stack(dataset)

        stacked.psf = stacked.psf.get_psf_kernel(position=geom.center_skydir, geom=geom, max_radius="0.3 deg")
        stacked.edisp = stacked.edisp.get_energy_dispersion(position=geom.center_skydir, e_reco=energy_axis.edges)

        stacked.name = names[idx]
        stacked.model = models[idx] + diffuse_model
        datasets_list.append(stacked)

    datasets = Datasets(datasets_list)

    dataset0 = datasets.datasets[0]
    print("dataset0")
    print("counts sum : ", dataset0.counts.data.sum())
    print("expo sum : ", dataset0.exposure.data.sum())
    print("bkg0 sum : ", dataset0.background_model.evaluate().data.sum())

    path = "$GAMMAPY_DATA/tests/models/gc_example_"
    datasets.to_yaml(path, overwrite=True)
Example #4
0
    def run_region(self, kr, lon, lat, radius):
        #    TODO: for now we have to read/create the allsky maps each in each job
        #    because we can't pickle <functools._lru_cache_wrapper object
        #    send this back to init when fixed

        # exposure
        exposure_hpx = Map.read(
            self.datadir + "/fermi_3fhl/fermi_3fhl_exposure_cube_hpx.fits.gz")
        exposure_hpx.unit = "cm2 s"

        # background iem
        infile = self.datadir + "/catalogs/fermi/gll_iem_v06.fits.gz"
        outfile = self.resdir + "/gll_iem_v06_extra.fits"
        model_iem = extrapolate_iem(infile, outfile, self.logEc_extra)

        # ROI
        roi_time = time()
        ROI_pos = SkyCoord(lon, lat, frame="galactic", unit="deg")
        width = 2 * (radius + self.psf_margin)

        # Counts
        counts = Map.create(
            skydir=ROI_pos,
            width=width,
            proj="CAR",
            coordsys="GAL",
            binsz=self.dlb,
            axes=[self.energy_axis],
            dtype=float,
        )
        counts.fill_by_coord({
            "skycoord": self.events.radec,
            "energy": self.events.energy
        })

        axis = MapAxis.from_nodes(counts.geom.axes[0].center,
                                  name="energy",
                                  unit="GeV",
                                  interp="log")
        wcs = counts.geom.wcs
        geom = WcsGeom(wcs=wcs, npix=counts.geom.npix, axes=[axis])
        coords = counts.geom.get_coord()

        # expo
        data = exposure_hpx.interp_by_coord(coords)
        exposure = WcsNDMap(geom, data, unit=exposure_hpx.unit, dtype=float)

        # read PSF
        psf_kernel = PSFKernel.from_table_psf(self.psf,
                                              counts.geom,
                                              max_radius=self.psf_margin *
                                              u.deg)

        # Energy Dispersion
        e_true = exposure.geom.axes[0].edges
        e_reco = counts.geom.axes[0].edges
        edisp = EnergyDispersion.from_diagonal_response(e_true=e_true,
                                                        e_reco=e_reco)

        # fit mask
        if coords["lon"].min() < 90 * u.deg and coords["lon"].max(
        ) > 270 * u.deg:
            coords["lon"][coords["lon"].value > 180] -= 360 * u.deg
        mask = (
            (coords["lon"] >= coords["lon"].min() + self.psf_margin * u.deg)
            & (coords["lon"] <= coords["lon"].max() - self.psf_margin * u.deg)
            & (coords["lat"] >= coords["lat"].min() + self.psf_margin * u.deg)
            & (coords["lat"] <= coords["lat"].max() - self.psf_margin * u.deg))
        mask_fermi = WcsNDMap(counts.geom, mask)

        # IEM
        eval_iem = MapEvaluator(model=model_iem,
                                exposure=exposure,
                                psf=psf_kernel,
                                edisp=edisp)
        bkg_iem = eval_iem.compute_npred()

        # ISO
        eval_iso = MapEvaluator(model=self.model_iso,
                                exposure=exposure,
                                edisp=edisp)
        bkg_iso = eval_iso.compute_npred()

        # merge iem and iso, only one local normalization is fitted
        background_total = bkg_iem + bkg_iso
        background_model = BackgroundModel(background_total)
        background_model.parameters["norm"].min = 0.0

        # Sources model
        in_roi = self.FHL3.positions.galactic.contained_by(wcs)
        FHL3_roi = []
        for ks in range(len(self.FHL3.table)):
            if in_roi[ks] == True:
                model = self.FHL3[ks].sky_model()
                model.spatial_model.parameters.freeze_all()  # freeze spatial
                model.spectral_model.parameters["amplitude"].min = 0.0
                if isinstance(model.spectral_model, PowerLawSpectralModel):
                    model.spectral_model.parameters["index"].min = 0.1
                    model.spectral_model.parameters["index"].max = 10.0
                else:
                    model.spectral_model.parameters["alpha"].min = 0.1
                    model.spectral_model.parameters["alpha"].max = 10.0

                FHL3_roi.append(model)
        model_total = SkyModels(FHL3_roi)

        # Dataset
        dataset = MapDataset(
            model=model_total,
            counts=counts,
            exposure=exposure,
            psf=psf_kernel,
            edisp=edisp,
            background_model=background_model,
            mask_fit=mask_fermi,
            name="3FHL_ROI_num" + str(kr),
        )
        cat_stat = dataset.stat_sum()

        datasets = Datasets([dataset])
        fit = Fit(datasets)
        results = fit.run(optimize_opts=self.optimize_opts)
        print("ROI_num", str(kr), "\n", results)
        fit_stat = datasets.stat_sum()

        if results.message == "Optimization failed.":
            pass
        else:
            datasets.to_yaml(path=Path(self.resdir),
                             prefix=dataset.name,
                             overwrite=True)
            np.save(
                self.resdir + "/3FHL_ROI_num" + str(kr) + "_covariance.npy",
                results.parameters.covariance,
            )
            np.savez(
                self.resdir + "/3FHL_ROI_num" + str(kr) + "_fit_infos.npz",
                message=results.message,
                stat=[cat_stat, fit_stat],
            )

            exec_time = time() - roi_time
            print("ROI", kr, " time (s): ", exec_time)

            for model in FHL3_roi:
                if (self.FHL3[model.name].data["ROI_num"] == kr
                        and self.FHL3[model.name].data["Signif_Avg"] >=
                        self.sig_cut):
                    flux_points = FluxPointsEstimator(
                        datasets=datasets,
                        e_edges=self.El_flux,
                        source=model.name,
                        sigma_ul=2.0,
                    ).run()
                    filename = self.resdir + "/" + model.name + "_flux_points.fits"
                    flux_points.write(filename, overwrite=True)

            exec_time = time() - roi_time - exec_time
            print("ROI", kr, " Flux points time (s): ", exec_time)